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Abstract 

It is known that the stenosis in the artery is responsible for changing the nature of blood flow from its usual state. Therefore, the 
flow of blood through a cosine-shaped stenosed artery has been investigated, treating blood as Casson fluid. The effects of ste-
nosis height, viscosity, slip velocity and yield stress on blood flow has been obtained. The results have been highlighted that the 
axial velocity, volumetric flow rate, pressure gradient and wall shear stress decrease with the increasing of viscosity and yield 
stress but these increases with the increasing of slip velocity. The results have been presented graphically for a better under-
standing by choosing the suitable parameters.  
Index Terms— Steady blood flow, Casson fluid, viscosity, yield stress, stenosed artery, slip velocity. 

——————————      —————————— 

1     INTRODUCTION                                                                     

It has been suggested that the leading causes of deaths all over 
the world are cardiovascular diseases. Stenosis or atheroscle-
rosis is one that is produced in the inner wall of the artery due 
to deposition of fatty substances, cholesterol, celluler waste 
products, calcium and fibrin. The presence of stenosis in the 
artery affects the hemodynamical behavior of blood flow. It 
has been observed that the blood behaves like a Newtonian 
fluid when it flows through larger diameter arteries at high 
shear rates and it behaves like a non-Newtonian fluid when it 
flows through smaller diameter arteries at low shear rates due 
to which it exhibits a certain yield stress for smooth flow.  
Many researchers have proposed various mathematical mod-
els to explain the different features of the blood flow. M. Gaur 
and M.K. Gupta [1] studied a Casson fluid model for the 
steady flow through a stenosed blood vessel. They observed 
that the velocity, flow rate and pressure gradient increase with 
the increase in slip velocity and decrease with growth in yield 
stress. P. Chaturani and D. Biswas [2] made a theoretical 
study of blood flow through stenosed artery with slip velocity 
at wall. S. Chakravarty [3] studied the effects of stenosis on 
the flow behaviour of blood in an artery. J. Venkatesan et al 
[4] analyzed a Casson fluid model for blood rheology in ste-
nosed narrow arteries. A.K. Singh and D.P. Singh [5] per-
formed in the blood flow obeying Casson fluid equation 
through an artery with radially non-symmetric mild stenosis. 
They found that the resistance to flow increases as stenosis 
height, viscosity, yield stress and flux increase but decrease as 
stenosis shape increase. S. Sapna [6] made an analysis of non-
Newtonian fluid in a stenosed artery. She observed that the 
resistance to flow, viscosity and wall shear stress increases  

with the stenosis size increases. D.F. Young [7] studied the 
effect of a time-dependent stenosis on flow through a tube. 
B.K. Mishra et al [8] presented the effect of shear stress, re-
sistance and flow rate across mild stenosis on blood flow 
through blood vessels. J.B. Shukla [9] analysed effects of ste-
nosis on non-Newtonian flow of the blood in an artery. S. 
Kumar and C. Diwakar [10] explained a mathematical model 
of power law fluid with an application of blood flow through 
an artery with stenosis. B. Singh et al [11] explored blood flow 
through an artery having radially non-symmetric mild steno-
sis by taking blood as a power law fluid. 
In this work, we have investigated the effects of stenosis 
height, blood viscosity, yield stress and slip velocity on blood 
flow by selecting blood as Casson fluid. 
 
2  Mathematical Formulation 

Consider a laminar, steady and fully developed flow of a 
non-Newtonian incompressible viscous fluid (blood) 
through an artery with cosine shaped stenosis symmetrical 
about the axis but non-symmetrical with respect to radial 
coordinates. Here blood is taken as Casson fluid to describe 
non-Newtonian behavior of flow. A cylindrical polar coor-
dinate system ( , ,r zθ ) is used to analyze the blood flow, 

where r  and z  are the variables taken in the radial and 
axial directions, respectively, and θ  is the azimuthal angle. 
The mathematical expression for the geometry of stenosis 
in artery can be written as: 
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 Figure 1: Geometry of stenosed artery. 
The constitutive equation for Casson’s fluid (blood) 
 may be written as 
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dv f
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τ τ τ τ
µτ

τ τ

 − ≥ − = =  
 ≤ 

    … (2) 

The equation governing the flow of blood is taken in the 
form 

  ( )1dp d r
dz r dr

τ− =                                                      … (3) 

The boundary conditions are 

  sv v=          at  ( )r R z=     (slip condition) 

  τ  is finite at  0r =            (regularity condition) 
In core region 
 cv v=          at  cr R=  

where, v is the velocity component in the axial direction, p 

the pressure, ρ  the density, 0R  the radius of the normal 

artery, R  the radius of the stenosed artery, 0l  the length of 

the stenosis, l  the length of the artery, τ  the shear stress, 

0τ  the yield stress, µ  the viscosity, δ  the maximum 

height of the stenosis and d  the distance between eq-
uispaced points. 
Integrating equation (3), we obtain 

  
2

rPτ =                                                                     … (4) 

where, dp P
dz

− =  is pressure gradient. 

The wall shear stress is 

2R
RPτ =                                                                   … (5) 

From Eqs. (4) and (5) we have 
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The yield shear stress is 
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From equation (2), we have 
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Integrating Eq. (8) with respect to r  which gives         
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                           ... (9) 

where, A  is an integrating constant.       
Using sv v=  at ( )r R z= in Eq. (9) we obtain 
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From Eq. (9) we can write 
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This is axial velocity along
cR r R≤ ≤ . 

Using cv v= at cr R= in Eq. (11) we have 
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This is core velocity along 0 cr R≤ ≤ . 

The volumetric flow rate Q  is, 
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Multiplying by 2 Rτ  we obtain 
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From Eqs.  (5) and (14) we have 
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Integrating Eq. (15) with respect to z using the conditions 

1p p=  at 0z =  and 2p p=  at z l=  we obtain 
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The resistance of flow is defined by 
 p

Q
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=                                                                     ... (17) 

From Eqs. (16) and (17) we obtain 
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Using these in Eq. (18) we obtain 
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If there is no stenosis i.e. 0R R= , then the resistance of 

flow is given by 
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From Eq. (14) we have 
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If there is no stenosis then 
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The wall shear stress is 
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3 . Figures: 
 

 

Figure 1(a): Variations of axial velocity v  with axial distance 
z for different values of  the viscosity µ  and yield stress 0τ  

with some fixed values,  
 

 
 

 
Figure 1(b): Variations of axial velocity v  along axial distance 
z for different values of the viscosity µ  and slip velocity sv  

with some fixed values 
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Figure 2(a): Variations of volumetric flow rate Q  along    the 

stenosis height 
0R

δ for different values of the viscosity µ  

and yield stress 0τ  with some fixed values 

         00.07, 0.0, 2, 0.4, 0.6R sv z d lτ = = = = = .  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 Figure 2(b): Variations of volumetric flow rate Q  along the 

stenosis height 
0R

δ for different values of the viscosity µ  

and slip velocity sv  with some fixed values 
         0 00.07, 0.02, 2, 0.4, 0.6R z d lτ τ= = = = = . 
 
 
 
 
 

     Figure 3(a): Variations of pressure gradient P  along the                

     stenosis height for different values of viscosity µ  and yield        
     stress 0τ  with some fixed values  

 
                      . 

 

     Figure 3(b): Variations of pressure gradient P  along the      

     stenosis height 
0R

δ  for different values of viscosity µ        

     and slip velocity sv  with some fixed values  

           .  
  
 

00.07, 0.0, 2, 0.4, 0.6, 1R sv z d l Qτ = = = = = =
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          Figure 4: Variations of resistance of flow λ  along the   

          stenosis height 
0R

δ  for different values of the viscosity    

         and yield stress with some fixed values 
                       
 
 
    

         Figure 5(a): Variations of wall shear stress Rτ  along the   

         stenosis height 
0R

δ for different values of the yield   

          stress 0τ and slip velocity sv  with some fixed value 
             00.003, 1, 2, 0.4, 0.6Q z d lµ = = = = =    
 
 
 
 

         
 

        Figure 5(b): Variations of wall shear stress Rτ  along the        

        stenosis height 
0R

δ for different values of the viscosity    

       µ  and slip velocity sv  with some fixed values 
         0 00.03, 1, 2, 0.4, 0.6Q z d lτ = = = = =  

  
       Figure 6: Variations of core velocity cv  along axial dis        
      tance z for different values of the viscosity µ  and slip       

      velocity sv with some fixed values 
                     
 

 
 
 

00.0, 0.025, 2, 2, 0.4, 0.6sv Q z l d l= = = = = =

0 0
0
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δτ τ= = = = =
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4   Results and Discussions: 
 
In this study, the effects of flow parameters on the flow quan-
tities such as axial velocity, volumetric flow rate, pressure 
gradient, resistance to flow and wall shear stress have been 
discussed. The following parameters with their ranges men-
tioned as: 

2
0:0 1, 0.003 0.006, 0.0 0.06 / ,Q dyne cmm τ− = − = −

2 ,l cm= 0 00.0 0.4 , 0.6 , 0.2d cm l cm R cm= − = =
1

0
0.0 0.50 , 0.01 0.35sv cms cmR

δ−= − = −   

are used to deduce the expressions of these flow quantities 
and get data for plotting the figures. 

In Figs. 1(a) and 1(b) the variations of axial velocity obtained 
through equation (11) with axial distance for different values 
of viscosity, yield stress and slip velocity have been shown 
respectively. Both figures show that the axial velocity fluctu-
ates (i.e., the axial velocity first increases and after a certain 
point, it starts decreasing and again increases along the axial 
distance). It is seen that from figure 1(a) the axial velocity de-
creases as viscosity and yield stress both increase. It is also 
seen that from figure 1(b), the axial velocity increases as slip 
velocity increases. 

The variations of volumetric flow rate derived by the equation 
(13) with stenosis height for different values of viscosity, yield 
stress and slip velocity have been displayed in Figs. 2(a) and 
2(b). it is observed that from these figures that, the volumetric 
flow rate decreases as stenosis height, viscosity and yield 
stress increase. But figure 2(b) shows the volumetric flow rate 
increases as slip velocity increases. 

Figs. 3(a) and 3(b) show the variations of the pressure gradient 
obtained in equation (15) along the stenosis height for various 
values of the viscosity, yield stress and slip velocity. It is ob-
served that from both figures, the pressure gradient decreases 
as stenosis height, viscosity increase. Also figure 3(a) depicts 
that the pressure gradient decreases as yield stress increases 
and figure 3(b) represents the pressure gradient increases as 
slip velocity increases. 

The variations of the resistance to flow obtained through equa-
tion (19) along the stenosis height for different values of vis-
cosity and yield stress have been presented in figure (4). This 
figure depicts that the resistance to flow increases as stenosis 
height increases. It is also clarified from this figure, the re-
sistance to flow increases as viscosity increases and decreases 
as yield stress increases. 
 
In Figs. 5(a) and 5(b) the changes in the wall shear stress are 
drawn against the stenosis height for different values of vis-
cosity, yield stress and slip velocity. These figures show that 
the wall shear stress increases as stenosis height and slip ve-
locity increase. Figure 5(a) also shows that the wall shear 
stress increases as yield stress increases. On the other hand, 
Fig. 5(b) shows that the wall shear stress decreases as viscosity 

increases. 
The changes in the core velocity obtained in equation (12) 
along the axial distance for various values of viscosity and slip 
velocity have been shown in figure (6). It depicts that the core 
velocity decreases when slip velocity increases. 
 
5   Conclusion : 
 
In this work, the aim of the researchers was to develop a 
mathematical study on the various blood flow properties 
through a stenosed artery by choosing blood as a Casson fluid. 
The study exhibits that the viscosity, Slip velocity, yield stress 
and stenosis affect the blood flow. It is concluded that the axial 
velocity, volumetric flow rate,pressure gradient and wall 
shear stress decrease as viscosity and yield stress increase but 
these flow properties increase as slip velocity increases. The 
resistance to flow increases as stenosis height and viscosity 
increase but it decreases as yield stress increases. In view of 
these arguments, the present study may be more useful to con-
trol the blood flow in diseased life. 
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