
International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 276
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Protection of E-Commerce Website from SQL
Injection: A Review

Meena
meenamaannehra@gmail.com

Department of Computer Science & Engineering
Dronacharya College of Engineering

Farukhnagar, Gurgaon, Haryana, India.

Abstract: - SQL injection Attack (SQLIA) is vulnerability in database based web application, of which the attackers take benefit to insert and execute
malicious code to get the database information. This technique gives unauthorized access to database by giving input which consists of malicious code
included into the query. Malicious query is treated like valid query by the database and executed. Attacker may have different intensions for attacks.
Attacker may want to identify inject able and weak parameter to attack. By the attacks he/she can modify data, change data and extract data. He/she
can get the confidential and sensitive data from the storage of database. Attacker may also want to know about the database schema which consists of
the number of rows and columns, name of table, columns data types, column name from database to make use of all to inject/get information into/from
the database system. In this paper we present detailed overview of what is SQL injection, how it works, intent of attack, types of attack, various
techniques and tools to detect and prevent SQL Injection, comparison of these tools based on attack types and deployment requirements.

Keywords: - E-Commerce, SQL, SQLIA, Injection, Attack Types, Database, Vulnerable, SQL Parser, SQL Check Attacker.

I INTRODUCTION

SQL injection attack is major issue and very serious so the
anticipation of SQL injection attack is major challenge in
day today life. This vulnerability exists when web
applications do not have proper input validation and use
not parameterized stored procedures. Poorly designed web
applications are vulnerable to injection of malicious code to
get database access by attacker. Proper input validation and
use of parameterized procedures can be used to prevent
SQL injection. SQL injection attacks allow attackers to spoof
identity, tamper with existing data, cause repudiation
issues such as voiding transactions or changing balances,
allow the complete disclosure of all data on the system,
destroy the data or make it otherwise unavailable, and
become administrators of the database server. So detection
and prevention of SQL injection attacks is very important to
stop SQL injection attack in websites. To achieve this
objective, automatic tools have been implemented by
different authors, which will be discussing in related work.
The purpose of this paper is to review the various SQL
injection detection and prevention tool. The structure of
this paper is as follows:-
Chapter I describes definition and brief introduction of SQL
Injection attack. In Chapter II related work of SQL Injection
detection and prevention techniques and tools is given. The
comparative analysis of SQL Injection detection and
prevention tools is also given in chapter II.
Chapter III finally summarizes a conclusion and future
scope of this survey.

1. What is SQL Injection?

SQL Injection is a technique in which attacker injects an
input query in order to change the query and illegally gain
the access of the database. SQL Injection allows attackers to
create, read, update, alter, or delete and modify query in
the back-end database and it also allow attackers to access
sensitive information such as social security numbers,
credit card number and other financial data. When any
vulnerability present in web applications then the error is
generated. Attacker takes an advantage of this error
message as it displayed by the web server depicts the type
of database structure that has been used [13].

2. How SQL Injection Works?

SQLIA is a hacking technique in which the attacker adds
SQL statements through a web application's input fields or
Hidden parameters to access to database system. Lack of
input validation in web applications causes hacker to be
Successful. For the following examples we will assume that
a web application receives an http request from a client as
input and generates a SQL statement as output for the back
end database server. For example an administrator will be
authenticated after Typing: username=superadmin and
password=admin@1234. Figure 1 describes a login by a
malicious user exploiting SQL Injection vulnerability.
Basically it is structured in three phases [19]:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 277
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

1. An attacker sends the malicious http request to the Web
application
2. Creates the SQL statement
3. Submits the SQL statement to the back end database
As shown in figure 1 website needs username and
password to login into admin panel. The SQL Query for
authorized the admin will be like as given below:-
Select * from Login where username= ‘superadmin’ and
password=’admin@1234’
The malicious user can bypass this authorization by using
SQL Injection by injecting SQL codes. Suppose malicious
user enters “ ‘ OR 1=1 -- “in user name field and “admin”
in password field then the admin authorization query will
be as:-
Select * from Login where username=’’ OR 1=1 -- and
password=’admin’

 Figure 1 Example of a SQL injection attack

Now although the malicious user does not know both
username and password but he can login into admin panel
because “Or 1=1” is always true and password is bypassed
by --, because – works as comment in SQL and the part
“and password=’admin’ “gets commented and as per query
structure the user is authorized and able to login.
The above SQL statement is always true because of the
Boolean tautology we appended (or 1=1) so, we will access
to the web application as an administrator without
knowing the right password.

3. Attack Intent [8]

Attacks can also be characterized based on the goal, or
intent, of the attacker. The attacker may want to probe a
Web application to discover which parameters and user-
input fields are vulnerable to SQLIA. Performing database
finger-printing: The attacker wants to discover the type and
version of database that a Web application is using. Certain
types of databases respond differently to different queries
and attacks, and this information can be used to
“fingerprint” the database. Knowing the type and version
of the database used by a Web application allows an
attacker to craft database specific attacks.

Determining database schema
To correctly extract data from a database, the attacker often
needs to know database schema information, such as table
names, column names, and column data types. Attacks
with this intent are created to collect or infer this kind of
information. Extracting data: These types of attacks employ
techniques that will extract data values from the database.
Depending on the type of the Web application, this
information could be sensitive and highly desirable to the
attacker. Attacks with this intent are the most common type
of SQLIA. Adding or modifying data: The goal of these
attacks is to add or change information in a database.

Performing denial of service
These attacks are performed to shut down the database of a
Web application, thus denying service to other users.
Attacks involving locking or dropping database tables also
fall under this category. Evading detection: This category
refers to certain attack techniques that are employed to
avoid auditing and detection by system protection
mechanisms.

Bypassing authentication
The goal of these types of attacks is to allow the attacker to
bypass database and application authentication
mechanisms. Bypassing such mechanisms could allow the
attacker to assume the rights and privileges associated with
another application user. Executing remote commands:
These types of attacks attempt to execute arbitrary
commands on the database. These commands can be stored
procedures or functions available to database users.

Performing privilege escalation
These attacks take advantage of implementation errors or
logical flaws in the database in order to escalate the
privileges of the attacker. As opposed to bypassing
authentication attacks, these attacks focus on exploiting the
database user privileges.

4. Main Cause of SQL injection [19]

Web application vulnerabilities are the main causes of any
kind of attack.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 278
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Invalidated input: this is almost the most common
Vulnerability on performing a SQLIA. There are some
parameters in web application, are used in SQL queries. If
there is no any checking for them so can be abused in SQL
Injection attacks. These parameters may contain SQL
Keywords, e.g. Insert, update or SQL control Characters
such as quotation marks and semicolons.

Generous privileges: normally in database the Privileges
are defined as the rules to state which database subject has
access to which object and what operation are associated
with user to be allowed to perform on the objects. Typical
privileges include allowing execution of actions, e.g. select,
insert, update, delete, drop, on certain objects. Web
applications open database connections using the specific
account for accessing the database. An attacker who
bypasses authentication gains privileges equal to the
Accounts. The number of available attack methods and
affected objects increases when more privileges are given to
the account. The worst case happen if an account can
connect to system that is associated with the system
administrator because normally has all privileges.

Uncontrolled variable size: if variables allow storage of
data be larger than expected consequently allow attackers
to enter modified or faked SQL statements. Scripts that do
not Control variable length may even open the way for
attacks, Such as buffer overflow.

Error message: error messages that are generated by the
back-end database or other server-side programs may be
returned to the client-side and presented in the web
browser. These messages are not only useful during
development for debugging purposes but also increase the
risks to the Application. Attackers can analyze these
messages to gather Information about database or script
structure in order to construct their attack.

Variable Orphism: the variable should not accept any data
type because attacker can exploit this feature and store
malicious data inside that variable rather than is suppose to
be. Such variables are either of weak type, e.g. Variables in
Php, or are automatically converted from one type to
another by the remote database.

Dynamic SQL: SQL queries dynamically built by scripts or
programs into a query string. Typically, one or more Scripts
and programs contribute and finally by combining User
input such as name and password, make the where Clauses
of the query statement. The problem is that query Building
components can also receive SQL keywords and Control
characters. It means attacker can make a completely
different query than what was intended.

Client-side only control: if input validation is implemented
in client-side scripts only, then security functions of those
scripts can be overridden using cross-site scripting.
Therefore, attackers can bypass input validation and send
invalidated input to the server-side.

Stored procedures: they are statements which are stored in
database. The main problem with using these Procedures is
that an attacker may be able to execute them and damage
database as well as the operating system and even other
network components. Usually attackers know System
stored procedures that come with different and almost
easily can execute them.

Into out file support: some of RDBMS benefit from into out
file clause. In this condition an attacker can manipulate SQL
queries then they produce a text file containing query
results. If attackers can later gain access to this file, they can
abuse the same information, for example, bypass
authentication.

Multiple statements: if the database supports union,
attacker has more chance because there are more attack
methods for SQL injection. For instance, an additional
insert statement could be added after a select statement,
causing two different queries to be executed. If this is
performed in a login form, the attacker may add him or
herself to the table of users.
Sub-selects: supporting sub-selects is weakness for RDBMS
when SQL injection is considered. For example, additional
select clauses can be inserted in where clauses of the
original select clause. This weakness makes the web
application more vulnerable, so they may be penetrated by
malicious users easily.

5. SQL injection attack Types [8]

There are different methods of attacks that depending on
the goal of attacker are performed together or sequentially.
For a successful SQLIA the attacker should append a
syntactically correct command to the original SQL query.

Tautologies: this type of attack injects SQL tokens to the
conditional query statement to be evaluated always true.
This type of attack used to bypass authentication control
and access to data by exploiting vulnerable input field
which use where clause.
"select * from employee where userid = '112' and Password
='aaa' or '1'='1'"
As the tautology statement (1=1) has been added to the
Query statement so it is always true.

Legal/logically incorrect queries: when a query is rejected,
an error message is returned from the database including
useful debugging information. This error messages help
attacker to find vulnerable parameters in the application

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 279
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

and consequently database of the application. In fact
attacker injects junk input or SQL tokens in query to
produce syntax error, type mismatches, or logical errors by
purpose.

Union query: by this technique, attackers join injected
query to the safe query by the word union and then can get
data about other tables from the application. Suppose for
example that the query executed from the server is the
following: select name, phone from users where id=$id by
injecting the following id value:
$id=1 union all select creditcardnumber, 1 from
Creditcartable
We will have the following query:
Select name, phone from users where id=1 union all select
creditcardnumber, 1 from creditcartable which will join the
result of the original query with all the credit card users.

Piggy-backed queries: in this type of attack, intruders
exploit database by the query delimiter, such as ";", to
append extra query to the original query. With a successful
attack database receives and execute a multiple distinct
queries. Normally the first query is legitimate query,
Whereas following queries could be illegitimate. So attacker
can inject any SQL command to the database. In the
following example, attacker inject " 0; drop table user " into
the pin input field instead of logical value. Then the
application would produce the query:
Select info from users where login='doe' and Pin=0; drop
table users because of ";" character, database accepts both
queries and executes them. The second query is illegitimate
and can drop users table from the database.

Stored procedure: stored procedure is a part of database
that programmer could set an extra abstraction layer on the
database. As stored procedure could be coded by
programmer, so, this part is as inject able as web
application forms. Depend on specific stored procedure on
the database there are different ways to attack. In the
following example, Attacker exploits parameterized stored
procedure. Create procedure dbo.isauthenticated
@username varchar2, @pass varchar2, @pin int
AsExec("select accounts from users Where login=’"
+@username+ "’ and pass=’" +@password+"’ and pin="
+@pin);
Go For authorized/unauthorized user the stored procedure
returns true/false. As an SQLIA, intruder input “ ’ ;
Shutdown; - -” for username or password. Then the stored
procedure generates the following query:
Select accounts from users where login=’doe’ and pass=’ ’;
shutdown; -- and pin=
After that, this type of attack works as piggy-back attack.
The first original query is executed and consequently the
second query which is illegitimate is executed and causes
database shut down. So, it is considerable that stored
procedures are as vulnerable as web application code.

Inference: by this type of attack, intruders change the
behaviour of a database or application. There are two well
known attack techniques that are based on inference: blind
injection and timing attacks.

Blind injection: sometimes developers hide the error
details which help attackers to compromise the database. In
this situation attacker face to a generic page provided by
developer, instead of an error message. So the SQLIA
would be more difficult but not impossible. An attacker can
still steal data by asking a series of true/false questions
through SQL statements. Consider two possible injections
into the login field:
SELECT accounts FROM users WHERE login=’doe’ and 1=0
-- AND pass= AND pin=0
SELECT accounts FROM users WHERE login=’doe’ and 1=1
-- AND pass= AND pin=0
If the application is secured, both queries would be
unsuccessful, because of input validation. But if there is no
input validation, the attacker can try the chance. First the
attacker submit the first query and receives an error
message because of "1=0". So the attacker does not
understand the error is for input validation or for logical
error in query. Then the attacker submits the second query
which always true. If there is no login error message, then
the attacker finds the login field vulnerable to injection.

Timing Attacks: A timing attack lets attacker gather
information from a database by observing timing delays in
the database's responses. This technique by using if-then
statement cause the SQL engine to execute a long running
query or a time delay statement depending on the logic
injected. This attack is similar to blind injection and attacker
can then measure the time the page takes to load to
determine if the injected statement is true. This technique
uses an if-then statement for injecting queries. WAITFOR is
a keyword along the branches, which causes the database
to delay its response by a specified time. For example, in
the following query:
declare @s varchar(8000) select @s = db_name()
if(ascii(substring(@s, 1, 1)) & (power(2, 0))) > 0 waitfordelay
'0:0:5'
Database will pause for five seconds if the first bit of the
first byte of the name of the current database is 1. Then
code is then injected to generate a delay in response time
when the condition is true. Also, attacker can ask a series of
other questions about this character. As these examples
show, the information is extracted from the database using
a vulnerable parameter.

Alternate Encodings: In this technique, attackers modify
the injection query by using alternate encoding, such as
hexadecimal, ASCII, and Unicode. Because by this way
they can escape from developer’s filter which scan input
queries for special known "bad character". For example

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 280
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

attacker use char (44) instead of single quote that is a bad
character. This technique with join to other attack
techniques could be strong, because it can target different
layers in the application so developers need to be familiar
to all of them to provide an effective defensive coding to
prevent the alternate encoding attacks. By this technique,
different attacks could be hidden in alternate encodings
successfully. In the following example the pin field is
injected with this string: "0; exec (0x73587574 64 5f77 6e),"
and the result query is:
SELECT accounts FROM users WHERE login=" ANDpin=0;
exec (char(0x73687574646f776e))
This example use the char () function and ASCII
hexadecimal encoding. The char () function takes
hexadecimal encoding of character(s) and returns the actual
character(s). The stream of numbers in the second part of
the injection is the ASCII hexadecimal encoding of the
attack string. This encoded string is translated into the
shutdown command by database when it is executed.

II RELATED WORK

Most of existing techniques, such as filtering, information-
flow analysis, penetration testing, and defensive coding,
can detect and prevent a subset of the vulnerabilities that
lead to SQLIAs. In this section, we list the most relevant
techniques. We reviewed a number of electronic journal
articles from IEEE journals and from ACM, and gathered
some information from web sites to gain sufficient
knowledge about SQL injection attacks. Following are the
papers from which we covered different important
strategies to prevent SQL injection attacks.
1. From [3], we covered the techniques for SQL injection
discovery. This paper also covered very well the SQL parse
tree validation that we mentioned. Parse tree parses the
query based on defined rules and verify whether query is
valid or not valid i.e. query is injected or not.
2. From [2], we covered the techniques to check and sanitize
input query using SQLCHECK, it use the augmented
queries and SQLCHECK grammar to validate query.
3. From [4], we covered techniques to remove
vulnerabilities from code. This paper proposed an
automated method for removing SQL injection
vulnerabilities from code by converting plain text SQL
statements into prepared statements. Prepared statements
restrict the way that input can affect the execution of the
statement. An automated solution allows developers to
remove SQL injection vulnerabilities by replacing
vulnerable code with generated secure code.
4. From [5], we covered the techniques covered an original
method to protect application automatically from SQL
injection attacks. The original approach combines static
analysis, dynamic analysis, and automatic code re-
engineering to secure existing properties.
5. From [1], we covered the techniques to protect store
procedures from SQL attacks. This paper provided novel

approach to shield the stored procedures from attack and
detect SQL injection. This method combines runtime check
with static application code analysis so that they can
eliminate vulnerability to attack. The key behind this attack
is that it alters the structure of the original SQL statement
and identifies the SQL injection attack. The method is
divided in two phases, one is offline and another one is
runtime. In the offline phase, stored procedures use a
parser to pre-process and detect SQL statements in the
execution call for runtime analysis. In the runtime phase,
the technique controlled all runtime generated SQL queries
related with the user input and checks these with the
original structure of the SQL statement after getting input
from the user. Once this technique detects the malicious
SQL statements it prevents the access of these statements to
the database and provides details about attack.
6. We reviewed various SQL injection detection and
prevention tools and reviewed their comparison of tools
based on attack types and deployment requirements.

1. SQL Injection Discovery Technique [3]

It is not compulsory for an attacker to visit the web pages
using a browser to find if SQL injection is possible on the
site. Generally attackers build a web crawler to collect all
URLs available on each and every web page of the site.
Web crawler is also used to insert illegal characters into the
query string of a URL and check for any error result sent
by the server. If the server sends any error message as a
result, it is a strong positive indication that the illegal
special meta character will pass as a part of the SQL query,
and hence the site is open to SQL Injection attack. For
example Microsoft Internet Information Server by default
shows an ODBC error message if an any meta character or
an unescaped single quote is passed to SQL Server. The
Web crawler only searches the response text for the ODBC
messages.

2. SQL Parse Tree Validation [3]

A parse tree is nothing but the data structure built by the
developer for the parsed representation of a
statement. To parse the statement, the grammar of that
parse statement’s language is needed. In this method, by
parsing two statements and comparing their parse trees, we
can check if the two queries are equal. When attacker
successfully injects SQL into a database query, the parse
tree of the intended SQL query and the resulting SQL query
generated after attacker input do not match. A parse tree is
a data structure for the parsed representation of a
statement. Parsing a statement requires the grammar of the
language that the statement was written in. By parsing two
statements and comparing their tree structures, we can
determine if the two queries are equal. When a malicious
user successfully injects SQL into a database query, the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 281
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

parse tree of the intended SQL query and the resulting SQL
query do not match. By intended SQL query, we mean that
when a programmer writes code to query the database,
he/she has a formulation of the structure of the query. The
programmer-supplied portion is the hard-coded portion of
the parse tree, and the user-supplied portion is represented
as empty leaf nodes in the parse tree. These nodes represent
empty literals. What he/she intends is for the user to assign
values to these leaf nodes. These leaf nodes can only
represent one node in the resulting query, it must be the
value of a literal, and it must be in the position where the
holder was located. An example of his/her intended query
is given in Figure 2. This parse tree corresponds to the
query, Select * from userregistration where name=? and
password=?. The question marks are place holders for the
leaf nodes she requires the user to provide. While many
programs tend to be several hundred or thousand lines of
code, SQL (structured query language) statements are often
quite small. This affords the opportunity to parse a query
without adding significant overhead. The parse tree for
intended query is given in figure 2 and with inputs is given
in figure 3.

 Figure 2 SELECT query with two user inputs

Figure 3 the same SELECT query as in Figure 2, with the
user input inserted

3. Approach for SQL Check [2]

Web applications have SQL injection vulnerabilities
because they do not sanitize the inputs they use to
construct structured output. The code is for an online store.
The website provides user input field to allow the user to
keep their credit card information which user can use for
future purchases. Replace method is used to escape the
quotes so that any single quote characters in the input is
considered as a literal and not a string delimiters. Replace
method is intended to block attacks by preventing an
attacker from ending the string and adding SQL injection
code. Although, card type is a numeric column, if an
attacker passes 2 OR 1=1” as the card type, all account
numbers in the database will be returned and displayed.

Figure 4 System architecture of SQLCHECK

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 282
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

In this approach they track through the program, the
substrings receive from user input and sanitize that
substrings syntactically. The aim behind this program is to
block the queries in which the input substrings changes the
syntactic structure of the rest of the query. They use the
meta-data to watch user’s input, displayed as ‘_’ and ‘_,’ to
mark the end and beginning of the each user input string.
This meta-data pass the string through an assignments, and
concatenations, so that when a query is ready to be sent to
the database, it has a matching pairs of markers that
identify the substring from the input. These annotated
queries called an augmented query. To build a parser for
the augmented grammar and attempt to parse each
augmented query, a parse generator used. Query meets the
syntactic constraints and considered legitimate if it parses
successfully. Else, it fails the syntactic constraints and
interprets it as SQL injection attack. The system architecture
of the checking system shows in Figure 4. Grammar of the
output language is used to build SQLCHECK and a policy
mentioned permitted syntactic forms, it resides on the web
server and taps generated queries. In spite of the input’s
source, each input which is to be passed into some query,
gets augmented with the meta-characters ‘_’ and ‘_,’.
Finally application creates augmented queries, which
SQLCHEKCK attempts to parse, and if a query parses
successfully, SQLCHECK sends it the meta-data to the
database, else the query get rejected.

4. SQL Injection Detection and Prevention Tools

Although developers deploy defensive coding but they are
not enough to stop SQLIAs to web applications so
researchers have proposed some of tools to assist
developers.

JDBC-Checker [16] was not developed with the intent of
detecting and preventing general SQLIAs, but can be used
to prevent attacks that take advantage of type mismatches
in a dynamically-generated query string. As most of the
SQLIAs consist of syntactically and type correct queries so
this technique would not catch more general forms of these
attacks.

CANDID [11] modifies web applications written in Java
through a program transformation. This tool dynamically
mines the programmer-intended query structure on any
input and detects attacks by comparing it against the
structure of the actual query issued. CANDID’s natural and
simple approach turns out to be very powerful for
detection of SQL injection attacks.

In SQL Guard [3] and SQL Check [2] queries are checked
at runtime based on a model which is expressed as a
grammar that only accepts legal queries. SQL Guard
examines the structure of the query before and after the
addition of user-input based on the model. In SQL Check,

the model is specified independently by the developer.
Both approaches use a secret key to delimit user input
during parsing by the runtime checker, so security of the
approach is dependent on attackers not being able to
discover the key. In two approaches developer should to
modify code to use a special intermediate library or
manually insert special markers into the code where user
input is added to a dynamically generated query.

AMNESIA [15] combines static analysis and runtime
monitoring. In static phase, it builds models of the different
types of queries which an application can legally generate
at each point of access to the database. Queries are
intercepted before they are sent to the database and are
checked against the statically built models, in dynamic
phase. Queries that violate the model are prevented from
accessing to the database. The primary limitation of this
tool is that its success is dependent on the accuracy of its
static analysis for building query models.

WebSSARI [17] use static analysis to check taint flows
against preconditions for sensitive functions. It works
based on sanitized input that has passed through a
predefined set of filters. The limitation of approach is
adequate preconditions for sensitive functions cannot be
accurately expressed so some filters may be omitted.

SecuriFly [10] is another tool that was implemented for
java. Despite of other tool, chases string instead of character
for taint information. SecurityFly tries to sanitize query
strings that have been generated using tainted input but
unfortunately injection in numeric fields cannot stop by this
approach. Difficulty of identifying all sources of user input
is the main limitation of this approach.

Positive tainting [8] not only focuses on positive tainting
rather than negative tainting but also it is automated and
does need developer intervention. Moreover this approach
benefits from syntax-aware evaluation, which gives
developers a mechanism to regulate the usage of string
data based not only on its source, but also on its syntactical
role in a query string.

IDS [14] use an Intrusion Detection System (IDS) to detect
SQLIAs, based on a machine learning technique. The
technique builds models of the typical queries and then at
runtime, queries that do not match the model would be
identified as attack. This tool detects attacks successfully
but it depends on training seriously. Else, many false
positives and false negatives would be generated.
Another approach in this category is SQL-IDS [18] which
focus on writing specifications for the web application that
describe the intended structure of SQL statements that are
produced by the application, and in automatically
monitoring the execution of these SQL statements for
violations with respect to these specifications.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 283
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Swaddler [12] analyzes the internal state of a web
application. It works based on both single and multiple
variables and shows an impressive way against complex
attacks to web applications. First the approach describes the
normal values for the application’s state variables in critical
points of the application’s components. Then, during the
detection phase, it monitors the application’s execution to
identify abnormal states.

5. Comparison of SQL Injection Detection/Prevention

Tools Based on Attack Types [19]

Proposed tools were compared to assess whether it was
capable of addressing the different attack types. It is
noticeable that this comparison is based on the articles not
empirically experience.
Table 1 summarize the results of this comparison. The
symbol “*” is used for tool that can successfully stop all
attacks of that type. The symbol “-” is used for tool that is
not able to stop attacks of that type. The symbol “o” refers
to tool that the attack type only partially because of natural
limitations of the underlying approach.

Tool

Attack

SQ
L ID

S[18]

Sw
adder[12]

ID
S[14]

C
A

N
D

ID
[11]

A
M

N
ESIA

[15]

SQ
L C

heck[2]

SQ
L G

uard[3]

JD
BC

 C
hecker[16]

W
ebSSA

R
I[17]

Securifly[10]

Positive Tainting[8]

1 Tautol
ogies

* o o o * * * o * o *

2 Illegal/
Incorr
ect

* o o o * * * o * o *

3 Piggy-
back

* o o o * * * o * o *

4 Union * o o o * * * o * o *
5 Store

Proced
ure

* o o o - - - o * o *

6 Infer * o o o * * * o * o *
7 Alter

Encodi
ngs

* o o o * * * o * o *

Table 1 Comparison of tools with respect to attack types

As the table shows the stored procedure is a critical attack
which is difficult for some tools to stop it. It is consisting of
queries that can execute on the database. However, most of
tools consider only the queries that generate within
application. So, this type of attack make serious problem for
some tools.

6. Comparison of SQL Injection Detection/Prevention

Tools Based on Deployment Requirement each tool with
respect to the following criteria was evaluated: (1) Does the
tool require developers to modify their code base? (2) What
is the degree of automation of the detection aspect of the
tool? (3) What is the degree of automation of the prevention
aspect of the tool? (4) What infrastructure (not including
the tool itself) is needed to successfully use the tool? The
results of this classification are summarized in Table 2.

Table 2 determines the degree of automation of tool in
detection or prevention of attacks. Actually automatically
detection and prevention is ability of tool that provides
user satisfaction. Also table shows that which tool needs to
modify the source code of application.

N
o

Tool Modi
fy
Code
Base

Detecti
on

Preventi
on

Additiona
l
Infrastruct
ure

1 AMNESIA[
15]

No Auto Auto None

2 IDS[14] No Auto Generat
e report

IDS
system-
Training
set

3 JDBC
Checker[16]

No Auto Code
suggesti
on

None

4 SECURIFLY
[10]

No Auto Auto None

5 SQLCHEC
K[2]

Yes Semi
Auto

Auto Key
managem
ent

6 SQL Guard
[3]

Yes Semi
Auto

Auto None

7 WEBSSARY
[17]

No Auto Semi
Auto

None

8 CANDID[1
1]

No Auto Auto None

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 284
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

9 SQL_IDS[18
]

No Auto N/A None

10 Swaddler
[12]

No Auto Auto Training

11 Positive
Tainting[8]

No Auto Auto None

Table 2 Comparison of tools based on deployment
requirements

III CONCLUSION AND FUTURE WORK

SQL Injection is most challenging threat to the web
application and many solutions to these attacks have been
proposed since the emerging of SQL injection. But no
solution provides security to full extent. SQL Injection is a
common technique that attacker use to attack on web
applications. These attacks modify the SQL queries. This
paper presents what is SQL injection, how it works, SQLIA
Intent, types of SQLIA and explores SQL injection detection
tools in related work. Comparison of tools is carried in
terms of their ability to detect the SQLIA. Furthermore, the
tools were compared based on attacks types and
deployment requirements. AMNESIA is best for SQLIAs
detection as it can be detect all types of attacks at both static
and dynamic phase.
In future, these detection tools can be used to detect SQL
Injection attacks. These techniques can also provide as
defense mechanisms for providing security against SQLIAs.
In addition, more research is needed to improve analysis
technique for providing better detection and prevention
against strong SQLIAs.

REFERENCES

[1] K. Wei, M. Muthuprasanna and S. Kothari, “Preventing
SQL Injection Attacks in Stored Procedures”, Dept. of
Electrical and Computer Engineering, Iowa State University
Ames, IA – 50011, 2007.
 [2] Z. Su and G. Wassermann, “The Essence of Command
Injection Attacks in Web Applications”, University of
California, Davis, Jan. 2006.
[3] G. T. Buehrer, B. W. Weide and P. A. G. Sivilotti, “Using
Parse Tree Validation to Prevent SQL Injection Attacks”,
Computer Science and Engineering, The Ohio State
University, Columbus, OH 2005.
[4] S. Thomas and L. Williams, “Using Automated Fix
Generation to Secure SQL Statements”, Department of
Computer Science, North Carolina State University,
Raleigh, NC, USA, 2007.
[5] E. Merlo, D. Letarte and G.Antoniol, “Automated
Protection of PHP Applications against SQL-injection

Attacks”, Department of Computer Science, Ecole
Polytechnique de Montreal,C.P. , 2007.
[6] S .Narang, S. Sharma and R. P. Mahapatra, “Prevention
of SQL Injection in E-Commerce”, Computer Science &
Engineering Department, 2 IT Department. SRM
University, NCR Campus, Modi Nagar, (UP) India, Sep
2015.
[7] C. Cerrudo, “Manipulating Microsoft SQL server using
SQL injection”, 2002.
[8] W. G. J. Halfond, J. Viegas and A. Orso, “A
Classification of SQL Injection Attacks
and Countermeasures”, College of Computing Georgia
Institute of Technology.
[9] S. Patil and N Agrawal, “Web Security Attacks and
Injection- A Survey”, Department of Computer Science &
Engineering, NRI Institute of Science & Technology,
Bhopal, India, Feb 2015.
[10] M. Martin, B. Livshits and M. S. Lam, “Finding
Application Errors and Security Flaws Using PQL: A
Program Query Language”, Computer Science Department,
Stanford University.
 [11] S. Bandhakavi, P. Bisht and P. Madhusudan,
“CANDID: Preventing SQL Injection Attacks using
Dynamic Candidate Evaluation”, University of Illinois
Urbana-Champaign, USA, 2007.
[12] M. Cova, D. Balzarotti, V. Felmetsger and G. Vigna,
“Swaddler: An Approach for the Anomaly-based Detection
of State Violations in Web Applications”, Department of
Computer Science, University of California Santa Barbara,
CA, USA, 2007.
[13] A. Bhanderi, N. Rawal, “A Review on Detection
Mechanisms for SQL Injection Attacks”,
P.G. Student, Dept. of Computer Engineering, C.G.P.I.T,
Uka Tarasadia University, Bardoli, Gujarat, India, Associate
Professor, Dept. of Computer Engineering, C.G.P.I.T, Uka
Tarasadia University, Bardoli, Gujarat, India.
[14] F. Valeur, D. Mutz and G. Vigna, “A Learning-Based
Approach to the Detection of SQL Attacks”, Reliable
Software Group, Department of Computer Science,
University of California, Santa Barbara, July 2005.
 [15] W. G. Halfond and A. Orso, “AMNESIA: Analysis and
Monitoring for NEutralizing SQL-Injection Attacks”,
College of Computing Georgia Institute of Technology,
Nov 2005.
[16] C. Gould, Z. Su and P. Devanbu, “JDBC Checker: A
Static Analysis Tool for SQL/JDBC Applications”,
Department of Computer Science, University of California,
Davis, 2004.
[17] Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee and S.
Y. Kuo, “ Securing Web Application Code by Static
Analysis and Runtime Protection”, 2004.
[18] K. Kemalis and T. Tzouramanis, “SQL-IDS: A
Specification-based Approach for SQL-Injection Detection”,
Department of Information & Communication, Systems
Engineering, University of the Aegean, Karlovassi, Samos,
83200, Greece, 2008.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 285
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

[19] A. Tajpour, S. Ibrahim, M. Sharifi, “Web Application
Security by SQL Injection DetectionTools”, Advanced
Informatics School, University Technology Malaysia,
Malaysia.

IJSER

http://www.ijser.org/

