
International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Implementation of Fast Artificial Neural Network for
Pattern Classification on Heterogeneous System

Devendra Singh Bharangar, Prof.Amit Doeger, Prof.Yogesh Kumar Mittal

—————————— ——————————

ABSTRACT-- Neural networks have been part of an attempt to emulate the learning curve of the human nervous system. Graphics Processing Units (GPUs) that come
with a Graphics card have hundreds of processing cores, and have highly parallel architecture. Because of the highly parallel architecture of GPUs, it suits very well for
parallel architecture such as Neural Network. In fact, GPUs have become a General Purpose Processor, and is a good option for implementation of many Parallel
Algorithms, including ANN. Further recent advancements in GPU computing have made it easier to utilize the resources of a GPU. Specifically the programming model
has been made much simpler. NVIDIA OR AMD OpenCL for example can be extremely helpful in accelerating ANN algorithms on GPUs. Thus OpenCL accelerated
ANN algorithms can be used in many real-time applications, including image processing, object classifications, voice recognition and in a number of systems which
require intelligence and auto control. This research thus aims at implementation of a Neural Network on a GPU in order to improve the performance as compared to CPU
implementation in a particular application. Particularly, we have chosen NVIDIA OR AMD's GPU and OpenCL platform for this implementation.

Keywords- GPUs, ANN Classifier,Training, NVIDIA OR AMD's CUDA/OpenCL

1. INTRODUCTION

G GPUs have become a General Purpose Processor, and

are a good option for implementation of many parallel
algorithms. In addition to this the GPU-based ANN is much
more cost effective as compared to FPGA or ASWIC based
solutions. Thus implementation of an Artificial Neural
Network on a GPU provides improved performance as
compared to CPU implementation.

Life before NVIDIA’s Compute Unified Device Architecture
(CUDA) [1] was extremely difficult for the programmer, since
the programmers needed to call graphics API (Open GL, Open
CV etc.). This also has a very slow learning rate. CUDA solved
all these problems by providing a hardware abstraction,
hiding the inner details of the GPUs, and the programmer is
freed from the burden of learning graphics programming.
CUDA can be extremely helpful in accelerating ANN
algorithms on GPUs [2] [3]. Then the other widely popular
standard is OpenCL, which we used in this work.

OpenCl/CUDA is C language with some extensions for
processing on GPUs. The user writes a C code, while the
compiler bifurcate the code into two portions. One portion is
delivered to CPU (because CPU is best for such tasks) while
the other portion, involving extensive calculations, is delivered
to the GPU(s) that executes the code in parallel. With such a
parallel architecture, GPUs [4] provide excellent
computational platform, not only for graphical applications
but any application where we have significant data
parallelism. Pattern Recognition is defined as the process
whereby a received pattern/signal is assigned to one of a
prescribed number of classes. The terms pattern means
something that is set up as an ideal to be imitated. Humans are
good at pattern recognition. The Pattern Recognition means
identification of the ideal object. Recognition should be
preceded by development of the concepts of the ideal or
model or prototype. This process is called Learning or
Training.

Thus CUDA/OpenCL accelerated ANN algorithms can be
used in many real-time applications, including image
processing, object classifications, voice recognition and in a
number of systems which require intelligence and auto
control. Thus implementation of an Artificial Neural Network
on a GPU improves the performance as compared to CPU

implementation. Such a scheme applied on Convolutional
Neural Networks can be used in future researches on
implementation of pattern matching on GPUs with much
more accuracy and speed.

 In Part II, we discuss details about the GPU, its
architecture, and how we can utilize these commodity GPUs
as general computational device.

 In part III, we discuss how we implemented a general
ANN on GPU, while in at the end we have summarized
various results along with conclusion and scope for future
scope.

2. ARCHITECTURE OF MODERN GRAPHICS
CARD

GPU computing is the use of a GPU (graphics processing
unit) to do general purpose scientific and engineering
computing. The model for GPU computing is to use a CPU
and GPU together in a heterogeneous computing model. The
sequential part of the application runs on the CPU and the
computationally-intensive part runs on the GPU [11]. From the
user’s perspective, the application just runs faster because it is
using the high-performance of the GPU to boost performance.
Fig 1 shows a typical Graphics card layout.

Fig 1: Example of a Typical GPU card

Fig 2: Comparison of Computational Power (in GFLOPs, Giga Floating Point
Operations per second) of a CPU and GPU

 The application developers have to modify their
applications to take the compute-intensive kernels and map

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

them to the GPU. The rest of the application remains on the
CPU. Mapping a function to the GPU involves rewriting the
function to expose the parallelism in the function and adding
“C” keywords to move data to and from the GPU. GPU
computing is enabled by the massively parallel architecture of
NVIDIA’s CUDA architecture and now OpenCL. The OpenCl
architecture consists of 100s of processor cores that operate
together to crunch through the data set in the application.

A GPU (Graphics Processing Unit) is a processor attached
to a graphics card dedicated to calculate floating point
operations. A graphics accelerator incorporates custom
microchips which contain special mathematical operations
commonly used in graphics rendering. The efficiency of the
microchips therefore determines the effectiveness of the
graphics accelerator. They are mainly used for playing 3D
games or high-end 3D rendering. A GPU implements a
number of graphics primitive operations in a way that makes
running them much faster than drawing directly to the screen
with the host CPU. The most common operations for early 2D
computer graphics include the Bit BLT operation, combining
several bitmap patterns using a Raster Op, usually in special
hardware called a "blitter", and operations for drawing
rectangles, triangles, circles, and arcs. Modern GPUs also
have support for 3D computer graphics, and typically include
digital video–related functions.

 A GPU implements a number of graphics primitive
operations in a way that makes running them much faster
than drawing directly to the screen with the host CPU. The
most common operations for early 2D computer graphics
include the Bit BLT operation, combining several bitmap
patterns using a Raster Op, usually in special hardware called
a "blitter", and operations for drawing rectangles, triangles,
circles, and arcs. Modern GPUs also have support for 3D
computer graphics, and typically include digital video–related
functions.

 A pipelined architecture is the standard procedure for
processors as it breaks down a large task into smaller
individual grouped tasks. When a set of instructions are
transferred to the GPU, then GPU breaks up the instructions
and sends the broken up instructions to other areas of the
graphics card specifically designed for decoding and
completing a set of instructions. These pathways are called
stages. The more stages the graphics card has, the faster it can
process information as the information can be broken down
into smaller pieces while many stages work on a difficult
instruction.

Figure 3: Processing flow on CUDA/OpenCL

Simple CUDA & OpenCL programs have a basic flow:

1. The host initializes an array with data.

2. The array is copied from the host to the memory
on the CUDA/OpenCL device.

3. The CUDA/ OpenCL device operates on the data
in the array.

4. The array is copied back to the host.

3. ANN ON GRAPHICS CARD

3.1. Motivation

 Any particular layer in ANN has a number of
processing nodes or Neurons. These Neurons work
independently. That means each of these processors can work
independently. Therefore, we intend to do this processing in
parallel on having 100s of processor cores. In this work we
utilized OpenCl parallel programming platform on a
Compatible GPU. Here we will explore how a general Neural
Network can be implemented on a GPU. We will then
compare the performance of GPU based-neural network with
a CPU implementation.

 To develop an Artificial Neural Network on a Graphical
Processing Unit, we used OpenCL for its implementation. The
main idea is to do the ANN calculations faster and thus
making it suitable for real-time applications. GPUs have
hundreds of processing units and have a highly parallel
architecture that clearly maps to ANN as ANN is also a
massively parallel system. In addition to this the GPU-based
ANN is much more cost effective as compared to FPGA or
ASWIC based solutions.

 This research aims at implementation of an Artificial
Neural Network on a GPU in order to improve the
performance as compared to CPU implementation.

Thus OpenCl accelerated ANN algorithms can be used in
many real-time applications, including Image processing,
character recognition, object classifications, voice recognition
and in a number of systems which require intelligence and
auto control.

 In this direction, we proposed following architecture for
character recognition on GPU. We developed a digital circuit
and then converted it into ANN. We first performed certain
experiments before implementation. We started with a two
layered neural network with one output node. In this there
are only two layers (i.e. input and output) and the hidden
layer is not there. The layers of nodes between the input and
output layers, which is not seen by outside, are called hidden
layers. In the nets, weighted sums of the inputs are calculated
by the output node. The output nodes then compare the
weights.

 Assume that a linear decision boundary will be used to
classify samples into two classes and each sample has m
features. If the discriminants function has the form

D=w0+w1x1+…+wm.xm, (1)

Then D=0 is the equation (1) of the decision boundary
between two classes. The weights w0, w1,…, wm are to be
chosen to provide good performance on the training set A
with feature vector x=(x1, x2,…, xm) is classified into one
class, say class1 if D > 0 and into other class, say class -1 if D <
0.If D=0 the sample x may be classified arbitrarily, here we are
assigning it to class 1. We then considered a problem of
calculating logical AND of two inputs using ANN. In logical
functions, 1 represents “true” or presence of binary feature,
while 0 represents “false” or absence of a binary feature. If x1
and x2 are binary features,x1=1 and x2=1 means that both

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

features are present ,so x1 AND x2=1.However if one of the
feature is absent (x1,x2,or both are 0) then x1 AND x2 = 0.One
of the possible lines that separates the point (1,1)
from(0,0),(0,1)and(1,0) has the equation -1.5+x1+x2=0(see
figure).Thus a set of weights for the two layer net that
produces a logical AND of its inputs is w0=-1.5,w1=1 and
w2=1.

 X2

 0 1

 X1

Figure 4: The separating line -1.5+x1+x2=0 for a logical AND pattern

 1 - 1.5

 X1 1 O

 X2 1

Figure 5: The two layer net implementing a logical AND

We first performed certain experiments before entire
implementation as in examples below. The first example
shows the AND implementation on ANN.

Thus the result implies that the output =1 only when both
inputs are 1 else output =0 as is the function of AND gate.

In second example, we have increased number of inputs and
thus modified C will be as shown below. The time required
for this performance on C is to be noted.

Thus we have done few examples of many inputs and one
output. Similarly we did examples on two inputs and two
outputs & also many inputs & two outputs. Our main aim
here is to show that a GPU can be the best option for an ANN
implementation especially in case of pattern recognition.

 Since we have considered an example to classify
characters A and B else unrecognized ones. Its C
implementation is as shown below and its corresponding
OpenCL implementation is also shown below the time
required for its execution is noted. Here we considered a
character with fixed number of bits i.e. n=15 that corresponds
to the character

i.e. A -0 0 1 0 0 0 1 1 1 0 1 0 0 0 1.

 B - 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0.

Bit map of A,

 00100

 01110

 10001

Bit map of B,

 01110

 01110

01110

 I0

 O0





 I14 O14

Figure 6: Digital circuit with many inputs and two outputs

X14 ….X0

 1 -1.5

 1

 1 O0

 1

 -1.5

 1 1 O1

Figure7.An ANN implementation of the above digital circuit

O0 O1 output

1 0 A

0 1 B

1 1 unrecognized character

0 0

 We have designed a digital circuit with many inputs
and two output (x1 & x2) such that we obtain the combination
of 4 output patterns. If the output combination is x1=x2=0 or
1, then the character is unrecognized else if x1=1, x2=0 then
character is A and if x1=0, x2=1 then the character is B.This
digital circuit is converted into its equivalent neural network
that will implement the equation- S1= ƩXA, S2= ƩXB, B=N-
0.5,here we assumed no of bits n+15,Y1=S1-B,and Y2=S2-B.

Here we’ll do OpenCL implementation of ANN and also note
down the time required for this performance.

 3.2 Experiments and Analysis

 We observed that the output of the neural network can
be defined as Y= ƩXi – B.Now our main focus is to show the
performance of neuro- reduction i.e. ƩXi.

It is just a sum reduction process. Here is where the actual
speed up is obtained when it is implemented on GPU as
compared to CPU.This process will take less time on GPU
since it has parallel architecture. Suppose that i=8 (i.e.
01100111), the CPU implementation for this case will take 8

O 1

O O

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

iterations as the addition is sequential. But in case of GPU, it
will end up in 3 iterations only i.e. log2 8=3.Here the bit
addition takes place in parallel.

 Performance speedup = iteration taken by CPU vs.
iterations required by GPU = 8/3

 = 2.6

Thus GPU is 2.6 times (260%) faster than CPU.

Now if we increase the number of inputs to 1024, then CPU
will require 1024 iterations while GPU will requires log2
1024=10 iterations. Hence the performance speed up

 = 1024/10
 = 102.4

Theoretical speed up = 102.4

Thus GPU is 102.4 times faster than CPU.

 3.3 Important Results

To prove the computational power of a GPU, we did large
no. of experiments with and without shared memory. The
results have been summarized in to tabular form for better
understanding.

TABLE1.

REDUCTION FULLY OPTIMIZED

N GRID_SIZE BLOCK_SIZE LOAD PER
THREAD

TIME
TAKEN

2^22 64 128 512 1.7805

2^22 64 256 256 1.6629

2^22 64 512 128 1.636

2^22 128 128 256 1.6553

2^22 128 256 128 1.6026

2^22 128 512 64 1.6545

2^22 256 128 128 1.6

2^22 256 256 64 1.6126

2^22 256 512 32 1.7527

2^22 512 128 64 1.5948

2^22 512 256 32 1.6992

2^22 512 512 16 1.9711

4. CONCLUSION AND FUTURE SCOPE

 In this paper, the discussion is all about our work for the
implementation of an Artificial Neural Network on a GPU,
which optimally will improve the performance as compared
to CPU implementation. Such a scheme applied on
Convolutional Neural Networks can be used in future
researches on implementation of pattern matching on GPUs
with much more accuracy and speed. OpenCL accelerated
ANN algorithms can also be used in several real-time
applications, including image processing, voice recognition
and in a number of systems which require intelligence and
auto control including object classifications.

 In future work with same purpose, OpenCL accelerated
algorithms might be useful to have solution for the problem
of pattern classification on other types of processors such as
DSP, FPGA etc. with respect to CPU.

 Although, we have worked suited for heterogeneous
system having a CPU and a GPU, however, the same can be
tested on the embedded systems, if required tools are
available. For example we can develop such a system on a
Nokia phone. We might have to wait because at present
mobile phone manufacturers have not come up with tools for
porting OpenCL on mobile phones.

 The application of mobile phone will provide portability
to the users and of course, it can be used as a basic algorithm
in a number of different mobile applications right from
gaming to advance financial applications.

ACKNOWLEDGEMENT

 I am grateful to my guides Prof.Amit Doegar and
Prof.Yogesh Kumar Mittal for his constant patient support
and useful suggestions. Any suggestions to further
improvement of this topic are most welcome.

REFERENCES

[1] R. Tom, Halfhill, “Parallel processing with CUDA”,
Microprocessor report. January 2008

[2] Z. Luo, H. Liu and X. Wu, “Artificial Neural Network
Computation on Graphic Process Unit”, Neural Networks,
2005. IJCNN '05. Proceedings. 2005 IEEE International Joint
Conference, vol.1, pp. 622 – 626, 31 July-4 Aug. 2005

[3] R. D. Prabhu, “GNeuron: Parallel Neural Networks with
GPU”, Posters, International Conference on High Performance
Computing (HiPC) 2007, December 2006

[4] Shuai Che , Michael Boyer, Jiayuan Meng, David Tarjan ,
Jeremy W. Sheaffer, Kevin Skadron, “A Performance Study of
General-Purpose Applications on Graphics Processors Using
CUDA”, Journal of Parallel and Distributed Computing, ACM
Portal, Volume 68 ,Issue 10, pp. 1370-1380 October 2008

[5] Elizabeth, Thomas, “GPU GEMS: Chapter 35 Fast Virus
Signature Matching on the GPU”, Addison Wesley

[6] Pat Hanrahan, “Why are Graphics Systems so Fast?” PACT
Keynote, Pervasive Parallelism Laboratory, Stanford
University, September 14, 2009

[7] Kayvon Fathalian and Mike Houston, “A closer look at GPUs”,
Communications of the ACM, Vol. 51 no. 10, October 2008

[8] Trendy R. Hagen, Jon M. Hjelmervik, Tor Dokken, “The GPU
as a high performance computational resource”, Proceedings
of the 21st spring conference on Computer graphics, pp. 21 –
26, 2005

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[9] R. H. Luke, D. T. Anderson, J. M. Keller S. Coupland, “Fuzzy
Logic-Based Image Processing Using Graphics Processor
Units”, IFSA-EUSFLAT 2009

[10] Victor Podlozhnyuk, Mark Harris, “NVIDIA CUDA
Implementation of Monte Carlo Option Pricing”, Tutorial in
NVIDIA CUDA SDK 2.3

[11] “CUDA Programming Guide 3.0”, Published by NVIDIA
Corporations

[12] David B. Kirk and Wen-mei W. Hwu, Programming Massively
Parallel Processors: A Hands-on Approach by Morgan
Kaufmann (February 5, 2010), ISBN 0123814723

 [13] K. Oh, “GPU implementation of neural networks” Pattern
Recognition, pp. 1311-1314. Vol. 37, No. 6. June 2004.

[14] Simon Haykin, “Neural Networks: A comprehensive
foundation”, 2nd Edition, Prentice Hall, 1998

[15] Araokar, Shashank, “Visual Character Recognition using
Artificial Neural Networks” Cog Prints, May 2005

[16] EarlGose, Steve Jost, Richard Johosonbaugh,”Pattern
Recognition and Image Analysis”, Eastern Economy Edition,
Prentice Hall, 1999

AUTHORS
 Devendra Singh Bharangar,Assistant Professor, Aligarh College of

Engineering & Technology,Aligarh,India E-mail: devendra23@hotmail.com
 Prof.Amit Doeger,CSE Department, National Institute of Technical

Teachers Training & Research, Chandigarh, India E- mail:
amit@nitttrchd.ac.in

 Prof.Yogesh Kumar Mittal,HOD(I.T.),Ajay Kumar Garg Engineering
College, Ghaziabad,India,E-mail:ykmittal@hotmail.co

