
International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

Developing a Protein Interaction Prediction Algorithm on

HPC

 Wael S. Afifi
#1

, Ali A. El-Moursy
*2

, Prof. Salwa Nassar
#3

Prof. Mohy Abo-elsoud
*4

, M. A. Mohamed
*5

 #Computer and Systems, Electronics Research Institute *Electronics and Communication Eng., Mansoura University

 Cairo, Egypt Mansoura, Egypt

 1waelsafifi17@eri.sci.eg 4mohyldin@yahoo.com

 3salwa@eri.sci.eg 5mazim12@yahoo.com
 *Electrical and Computer Eng., University of Sharjah

 Sharjah, UAE

 2aelmorsi@sharjah.ac.ae

Abstract— The prediction of protein-protein interaction is one

of the fundamental problems in bioinformatics. A novel

algorithm called STRIKE has shown to achieve good

performance in protein-protein interaction prediction. It

assumes that proteins interact if they contain similar substrings

of amino acids. In this paper, we developed a parallel STRIKE

algorithm and we implemented our proposal on Cluster system.

Using short protein sequence sets, the overall execution time of a

parallel implementation of this bioinformatics algorithm was

decreased to about 5 times when increasing number of nodes

from one compute node to 6 parallel nodes. Key optimizations to

the implementation are also discussed.

Keywords— protein-protein sequence matching; parallel

computing; performance analysis; HPC computing; sequence

comparison

I. INTRODUCTION

The prediction of protein-protein interaction (PPI) is
one of the fundamental problems in computational
biology as it can aid significantly in identifying the
function of newly discovered proteins. Understanding
protein-protein interactions is crucial for the investigation
of intracellular signaling pathways, modeling of protein
complex structures and for gaining insights into various
biochemical processes.
To solve this problem, many experimental techniques
have been developed to predict the physical interactions
which could lead to the identification of the functional
relationships between proteins. These experimental
techniques are however, very expensive, significantly
time consuming and technically limited, resulting in a
growing need for the development of computational
tools that are capable of identifying PPIs. To this end,
many impressive computational techniques have been
developed. Each of these techniques has its own
strengths and weaknesses, especially with regard to the
sensitivity and specificity of the method. Some of the
state-of-the-art techniques such as the Association
Method (AM) [1], Maximum Likelihood Estimation (MLE)
[2], Maximum Specificity Set Cover (MSSC) [3] and

Domain-based Random Forest [4] have employed
domain knowledge to predict PPI. The motivation behind
this employment is that molecular interactions are
typically mediated by a great variety of interacting
domains. PIPE (Protein-Protein Interaction Prediction
Engine) [5] was also developed and it is based on the
assumption that some of the interactions between
proteins are mediated by a finite number of short
polypeptide sequences. These sequences are typically
shorter than the classical domains, and are used
repeatedly in different proteins and contexts within the
cell.
However, identifying domains or short polypeptide
sequences is a long and computationally expensive
process.
These techniques are also not universal because the
accuracy and reliability of these methods is dependent
on the domain information of the protein partners.

In this paper, we introduce a novel algorithm termed
STRIKE which employs String Kernel to predict PPI. The
string kernels (SK) approach has been shown to achieve
good performance on text categorization tasks [6] and
protein sequence classification [7]. The basic idea of this
approach is to compare two protein sequences by
looking at common subsequences of fixed length. The
string kernel is built on the kernel method introduced by
[8] and [9]. The kernel computes similarity scores
between protein sequences without ever explicitly
extracting the features. A subsequence is any ordered
sequence of amino acids occurring in the protein
sequence, where the amino acids are not necessarily
contiguous. The subsequences are weighted by an
exponentially decaying factor of their full length in the
sequence, hence emphasizing those occurrences that
are more contiguous. We understand that the
subsequences’ similarity between two proteins may not
necessarily indicate interaction, however, it is evidence
that we can’t ignore. Subsequence similarity helps in
inferring homology. Homologous sequences usually
have the same or very similar structural relationships.

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 2
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

A drawback of this approach is observed when the
level of similarity between the protein pairs is too low to
pick up interaction. The reasonable explanation is that in
the case of low sequence, there are always similar
patterns of identical amino acid residues which could be
seen in the two sequences. The pattern of sequence
similarity reflects the similarity between experimentally
determined structures of the respective proteins or at
least corresponds to the known key elements of one
such structure [10]. Structural evidence indicates that,
interacting pairs of close homologs usually interact in the
same way [11]. The Likelihood ratio in this study
expresses the reliability of such genomic feature. In our
case, there is no doubt that the SK method is a good
indicator of homology between protein pairs. The
intensive comparison between subsequences exists in
protein pair may capture structural domain knowledge or
typically subsequences which are shorter than the
classical domains and could appear repeatedly in the
protein pairs of interest. We are also encouraged by the
success of a recently published work employing pairwise
alignment as a way to extract meaningful futures to
predict PPI. The PPI based on Pairwise Similarity (PPI-
PS) method consists of a representation of each protein
sequence by a vector of pairwise similarities against
large subsequences of amino acids created by a shifting
window which passes over concatenated protein training
sequences. Each coordinate of this vector is typically the
E-value of the Smith-Waterman score [12]. One major
drawback of the PPI-PS is that each protein is
represented by computing the Smith-Waterman score
against a large subsequence created by concatenating
protein training sequences. However, comparing short
sequences to very long ones will result in some
potentially valuable alignments to be missed out. The
SK however, tackles this weakness by capturing any
match or mismatch which exists in the protein sequence
of interest.

In Section 2, we explain the parallel protein
sequence decomposition and matching algorithm on
parallel nodes. Section 3 formally presents the parallel
sequence matching algorithm and its complexity
analysis, and discusses the implementation of the
application on multiple nodes. Section 4 reports HPC
platforms used in our experiments. Section 5 presents
the resulting performance analysis and results and. The
paper concludes in Section 6.

II. PARALLEL PROTEIN SEQUENCE MATCHING ALGORITHM

We start explaining how the algorithm works by a
simple example which compares the two short protein
sequences s1=”lql” and s2=”lqal”, where there exists
one string of characters in each sequence. For
computational simplicity and to meet common memory
capacities of modern computers, we set the length of
substring (patterns to match) to 2. In other words, these

sequences are implicitly transformed into feature
vectors, where each feature vector is indexed by the
substrings of length 2. Table I shows the decomposition
of each of the two sequences into 2-character
substrings. Each sequence is decomposed into all
possible ordered (from left to right) combinations of
characters included in the sequence such that the 2
characters need not be consecutive. The first three
(from the left) 2-character substrings represent the
decomposition of the s1 sequence, while all 6 2-
character substrings represent the decomposition of the
second sequence s2.

TABLE I

MAPPING TWO STRINGS “LQL” AND “LQAL” TO SIX DIMENSIONAL FEATURE

SPACE

 lq ll ql la qa al

S1 = Ø(lql) λ2 λ3 λ2 0 0 0

S2 = Ø(lqal) λ2 λ4 λ3 λ3 λ2 λ2

When a 2-character substring appears in a sequence

such that these 2 characters are consecutive in the
sequence, the substring’s dom –degree of matching— in
that sequence is represented by λ2, where λ is a decay
factor. For instance, the substring “lq” fits this case in the
first sequence. When these 2 characters are separated
by another character (gap of 1), the substring’s dom is
λ2+gap of 1= λ3. The substring “ll” fits this case in the first
sequence. When the 2 characters in the appearing
substring are further spaced by exactly gap characters,
the dom is represented by λ2+gap. The doms for the
substrings for the first sequence and all substrings for
the second sequence are computed in that fashion as
shown in Table I. When matching the 2 sequences, the
2-character substrings to impact and increase the
degree of matching must exactly appear in both
sequences.

To reflect the degree of matching between the s1 and
s2 sequences, the un-normalized string kernel (SK) for
the 2 sequences, k(lql,lqal) can clearly be computed as
the dot product of the 2 rows of Table 1 containing the
doms, i.e. λ4+λ7+λ5. Assuming that the decay factor λ is
equal to 0.5, k(lql,lqal)=0.102. The higher the un-
normalized kernel the higher the indication of matching
between the 2 sequences and the higher is the
interaction.

To parallelize this algorithm, we describe a highly
parallel algorithm consisting of the following 3 steps:

i. Decomposition

ii. Sorting

iii. Inner Product

In the decomposition step, the amino acid sequences
are allocated to processing nodes, one sequence per
node. For instance let us assume that the SKs of the 4
amino acid sequences “lyq,” “qyla”, “yqla” and “qla” are
computed on four parallel computing nodes. The goal is
to find mutual interaction between these 4 sequences.

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 3
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

The processing node allocation of the 4 sequences
proceeds as shown in Fig. 1.a.

In all nodes, the decomposition of each protein
sequence proceeds in parallel and their execution times
overlap in time. Each sequence is decomposed into 2-
amino acid substrings starting with adjacent amino acids
as shown in Fig. 1.b. The “2” in “(ly 2)” refers to the
power of the weighted decay factor (λ) (i.e. λ2) indicating
no gap (i.e. 3

rd
 character) between the “l” and the “y.”

Since the amino acids in the resulting substring are
not necessarily required to be contiguous, the
decomposition into 2-amino acid substrings with a non-
adjacent amino acid separated by another amino acid
takes place as illustrated in Fig. 1.c.

Again, the “3” in “(lq 3)” refers to the power of the
weighted decay factor (λ) (i.e. λ3), meaning that the “l”
and “q” are separated by another amino acid (“y”) in the
sequence “lyq”. Finally the decomposition into 2-amino
acid substrings composed of non-adjacent amino acid
separated by 3 other amino acids takes place as shown
in Fig. 1.d.

As nodes 1 and 4 have shorter sequences to process
in step 1, they will complete step 1 ahead of processing
nodes 2 and 3. Thus nodes 1 and 4 can immediately
proceed to step 2, while nodes 2 and 3 will proceed to
step 2 immediately after completing step 1.

In the second step of the parallel algorithm, the 2-
amino acid substrings generated in the first step are
sorted alphabetically based on their 2-letter string
content. Again each node sorts its strings alphabetically
in parallel with the other nodes so the string sortings in
all 4 nodes overlap in time. After step two completes, the
4 processing nodes will have for content the sorted
strings shown in Fig. 1.e.

In the third step, the inner products are carried out on
half
(4/2=2) the nodes with the largest substring set
cardinality. This choice is made to minimize the total
inter-node communication time. In our example, nodes 2
and 3 have the highest number of generated substrings.
Each of these nodes maintains its 2-amino acid
substrings and receives 3 amino acid strings generated
by the node which is allocated the other sequence to
match with its sequence. To simplify this example, let us
say that our goal is to match the protein sequences “lyq”
(node 1) and “qyla” (node 2) together, and the protein
sequences “yqla” (node 3) and “qla” (node 4) together,
in step 3, and not all the 4 sequences with each other.
As a result, the following data communications will take
place, as shown in Fig. 1.f.

Node 1 sends its generated 2-amino acid substrings
to node 2, and node 4 sends its generated 2-amino acid
substrings to node 3.

In our case of a message-passing system, the data
communication takes place in the form of messages

sent by the sender nodes (1 and 4) to the destinations
nodes (2 and 3).

In case of a shared memory system [13], processing
nodes 2 and 3 read the 2-amino acid substring data
generated by nodes 1 and 4 from shared memory. After
the data is received or read by the destination nodes,
the processing nodes 2 and 3 will hold the substrings
shown in Fig. 1.f. nodes 1 and 4 need not remain active.

Fig. 1.a Allocation of sequences to processing cores (nodes)

Fig. 1.b Decomposition of each protein sequences into substrings of

Length=2 and Distance=1

Fig. 1.c Decomposition into substrings of Distance=2

Fig. 1.d Decomposition into substrings of Distance=3

Fig. 1.e Content of the cores (nodes) is sorted substrings

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 4
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

Fig. 1.f Inter-core (Inter-node) communication

Fig. 1.g Contents of each core (node) after inter-core (inter-node)

communications

Fig. 1.h Inner products

In our example, node 2 and 3 then start performing
the inner products between their strings generated in
step 2 and the received strings generated by the
neighboring node are shown in Fig. 1.g. The inner
product (α n) . (β m) succeeds when the 2 strings match
i.e. α=β, producing the number n+m (representing λn+m).
Otherwise if α is different from β, then it’s a mismatch
(resulting in 0). Thus nodes 2 and 3 will simultaneously
perform the following inner products. Note that node 2
will take the product of ly (followed by lq, and yq,
respectively) with the substrings in the other set. The
results are presented by each node involved in the inner
product step as follows:

Node Result
2 0
3 4,6,4: λ4+ λ6 + λ4 = 2 λ4+ λ6

On a processing node, matching two substrings

starting with the same amino acid will speed up the
kernel computation step. After matching a string with all
other substrings starting with the same amino acid, the
remaining strings in the second sequence can be
skipped as the strings have been sorted in alphabetical
order in the second step. For instance, referring to
above results, after matching (ly 2) to (la 2), processing

of the string (ly 2) stops as the remaining strings in the
second set do not start with the amino acid l. This could
be implemented by a simple indexing mechanism based
on the starting amino acid of the substrings. In the
absence of such mechanism, a string will have to be
matched (i.e. its inner product taken) with all strings in
the other set until a match is found or until all the strings
in the other set have been exhausted.

Step 3 can be repeated as many times as needed to
match other protein sequences allocated to other
processing nodes. For instance to match the lyq
(allocated to processing node 1) and qla (allocated to
processing node 4) sequences, processing node 4
sends its 2-amino acid substrings generated in step 2 to
processing node 1 which carries out the inner product
step. Thus the parallel algorithm is capable of matching
as many sequences in parallel as desired based on the
availability of processing nodes. STRIKE is highly
parallel and should achieve excellent performance
scalability with increasing hardware resources.

III. MPI PARALLEL IMPLEMENTATION ON HPC

In our message-passing interface (MPI) implementation,
we make two changes to the previous algorithm. For
efficiency and proper indexing, we skip the sorting step
and perform matching between all the 2-character
substrings of the two protein sequences to match.
Second, to improve the matching accuracy, we modify
the SK to be the weighted inner product of the doms (α
n) . (β m), i.e. from λn+m to λn+m x matrix(c1) x matrix(c2),
where c1 and c2 are the first and second characters
appearing in the matching substrings α=β=”c1 c2”, and
matrix(c1) is a weight given to characters, such that
alphabetical characters A, B, …C can be assigned
different weightage helping direct the matching towards
character-orientation.

The parallel implementation consists of a main
procedure set and the other from the testing set, and
amino acid matrix, which reads the input protein
sequences, one from the training launches parallel jobs
which are assigned an equal number of sequences to
match and which generate the pairs of amino acids and
their inter-distances and compute the portion of the
score matrix corresponding to the sequences assigned
to these jobs. The matrix contains all amino acid weights
corresponding to all characters in the protein sequence.
Afterwards, control is passed back to the main
procedure for printing the score matrix, and computing
the execution time. The basic STRIKE procedure
proceeds as follows.

Algorithm STRIKE

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 5
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

Data: - Files train.txt, test.txt containing the protein
Sequences

- File matrix.txt containing the weights of each
amino acid in the training sequence

- value of lambda, λ, 0.8 by default
- NumThreads, number of parallel threads to

launch

Begin

1. Read all amino acid sequences from their data files.
The training sequences were read from a train.txt file,
while the testing sequences were read from a test.txt
file, while the matrix values assigning each of the amino
acid characters a weight were read from a matrix.txt file.
2. For each sequence in the training and testing sets,
pair each amino acid with one subsequent amino acid,
and store this pair of amino acids along with the
distance between these 2 amino acids.
3. Launch numnodes parallel jobs with an equal load of
sequences each performing the following sequential
steps

3.1 Set the matching scorei,j corresponding to
the 2 amino acid sequences i and j to 0.

3.2 For any 2 amino acid sequences, match the
pairs of amino acids of the first sequence i in the testing
set with the pairs of amino acids of the second
sequence j in the training set.

3.3 If both amino acid pairs exactly match, then

3.3.1 add their distances together,
disti,j =disti + distj

3.3.2 update scorei,j as follows
scorei,j = scorei,j +λdisti,j x matrix(amino acidi) x

matrix(amino acidj),
where matrix(a) is the matrix value corresponding to
amino acid letter “a.”

4. When all jobs are done all pairs of sequences
assigned to them, communicate to gather score in one
node at least, then print the sequence scorei,j’s as a
matrix of floating point numbers with row index i and
column index j. Also, calculate and print the execution
time.
End

__

Complexity-wise, step 1 is O(l1 x n1 + l2 x n2) where n1

and n2 are the lengths of the protein sequences, and l1

and l2 are the numbers of protein sequences in both
testing and training sets. Step 2 is O(l1 x n1

2
 + l2 x n2

2).
Step 3 is O(l1 x l2 x n1 x n2). Step 4 is O(l1 x l2). Therefore
the entire algorithm is O(l1 x l2 x n1 x n2).

IV. EXPERIMENTAL SETUP

The application was implemented on two different
high performance computing (HPC) platforms or
clusters; the main difference between them is the
scaling that we could reach to in both. The small-scale

cluster has 10 PCs, one acts as the server, while the others are

the clients. The server has 2 single core processors. Each

processor is 3.4 GHz Intel Pentium 4 CPU, while the clients

are classified as follows:

i. Three clients of single core processor, each

processor is 3.4 GHz Intel Pentium 4 CPU.

ii. Six clients of two dual core processors, each

processor is 2.4 GHz Intel Pentium Dual CPU.

The cluster nodes are connected via a 3Com LAN switch
10/100/1000 MHz and LAN cables of types CAT5 (which

enable data rates up to 100 MHz) and CAT5e (which enable

data rates up to 1000 MHz).

We used gcc complier, version 3.4.6 20060404 (Red Hat

3.4.6-8) which has a lot of optimized implementations for the

different libraries on Linux families.

For parallel experiments, we used MPICC compiler,

version mpich-1.2.4 which is a freely available, portable

implementation of MPI (Message Passing Interface) used to

allow computers to communicate with each other.

Our experiment is done on various number of nodes (i.e., 1,
2, 4 and 6 nodes) using short-sequence set of data.

Performance Analysis is done and explained in next section.

V. RESULTS AND ANALYSIS

The first factor to examine is the computation time; fig.
2 shows only the computation speedup for STRIKE
application (on the y-axis) for increasing number of
nodes (on the x-axis). As expected the computation time
is decreased in a semi-linear manner by increasing the
number of nodes.

Next factor to examine is the communication effect.
Fig. 3 shows the increase in communication time for
increasing number of nodes as the number of messages
required to be sent and received among nodes are
increases.

TABLE III

BIBLIOTECA ALEXANDRINA SUN MICROSYSTEM TECHNICAL DESCRIPTION

Number of Nodes 128 eight-core compute nodes

Processors/node 2 quad-core sockets per node, each is Intel
Quad Xeon E5440 @ 2.83GHz

Memory/node 8 GB memory per node, Total memory 1.05
TBytes (132 * 8GB)

Node-node

interconnect

Ethernet & 4x SDR Infiniband network for
MPI

4x SDR Infiniband network for I/O to the

global Lustre filesystems

pre- and post-

processing nodes

6 management nodes, incl. two batch nodes
for job submission w. 64GB RAM

OS OS, Compute Node: RedHat Enterprise
Linux 5 (RHEL5)

OS, Front End & Service Nodes: RedHat
Enterprise Linux 5 (RHEL5)

Fig. 4 compares the relative communication time with

the relative computation time for increasing number of
nodes. The main observation is that the communication

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 6
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

overhead is negligible for lower number of nodes (i.e., 2
and 4 nodes) because it is less than 7%, but it cannot be
neglected when using higher number of nodes (6 nodes)
as it exceeds 12%.

VI. CONCLUSIONS

STRIKE was shown to improve upon the existing
state-of-the-art methods for Protein-protein interaction
prediction. We described the parallelization of STRIKE
and its MPI parallel implementation and performance
enhancement, specific algorithm enhancements and
compiler flag enhancements, on a heterogeneous
cluster system. On small protein sequence sets, the
execution time of a parallel implementation of this
bioinformatics algorithm was reduced to about 6 times
when increasing number of nodes from one compute
node to 5 compute nodes. PC cluster with 6 nodes takes
a few communication time and scales the computation
time near to linear. A higher number of nodes will
improve computation performance if we increased the
size of the protein sequences, but this will also effect on
the communication cost. Our implementation was shown
to scale very well with increasing data size and number
of nodes.

Fig. 2 Computation speedup vs. number of nodes using short-sequence set on

small-scale cluster

Fig. 3 Increase in communication time vs. number of nodes using short-

sequence set on small-scale cluster

Fig. 4 Application performance using short-sequence set w.r.t 1 node on

small-scale cluster

REFERENCES

[1] Sprinzak,E. and Margalit,H. Correlated sequence-signatures as markers

of protein-protein interaction. J. Mol Biol., 311, 2001, pp. 681–692.

[2] Deng,M. Mehta,S. Sun,F. Cheng,T. Inferring domain-domain

interactions from protein-protein interactions. Genome Res., 12, 2002,

pp. 1540-1548.

[3] Huang,T.W. Tien,A.C. Huang,W.S. Lee,Y.C. Peng,C.L. Tseng,H.H.

Kao,C.Y. Huang, C.Y. POINT: a database for the prediction of protein-

protein interactions based on the orthologous interactome.

Bioinformatics, 20, 2004, pp. 3273-3276.

[4] Xue-Wen,C. Mei,L. Prediction of protein–protein interactions using

random decision forest framework. Bioinformatics, 21, 2005, pp.

4394–4400.

[5] Sylvain,P. Frank,D. Albert,C. Jim,C. Alex,D. Andrew,E. Marinella,G.

Jack,G. Mathew,J. Nevan,K. Xuemei,L. Ashkan,G. PIPE: a

proteinprotein interaction prediction engine based on the re-occurring

short polypeptide sequences between known interacting protein pairs.

BMC Bioinformatics, 7, 2006, pp. 365.

[6] Lodhi,H. Saunders,C. Shawe-Taylor,J. Cristianini,N. Watkins,C. Text

Classification using String Kernels. J. of Machine Learning Res., 2,

2002, pp. 419-444.

[7] Zaki,N.M. Deris,S. Illias,R.M. Application of string kernels in protein

sequence classification. Applied Bioinformatics, 4, 2005, pp. 45-52.

[8] Haussler, D. Convolution kernels on discrete structures. Technical
Report UCSC-CRL- 99-10, University of California Santa Cruz, 1999.

[9] Watkins, C. Dynamic alignment kernels. Advances in Large Margin

Classifiers, Cambridge, MA, MIT Press, 2000, pp. 39-50.

[10] Koonin, E.V. and Galperin, M.Y. Sequence-Evolution-Function:

Computational Approaches, in Comparative Genomics, 2002, Kluwer

Academic Publishers.

[11] Zaki,N. Lazarova-Molnar,S. El-Hajj,W. Campbell, P. Proteinprotein

interaction based on pairwise similarity, BMC Bioinformatics, 2009,

pp. 10-150.

[12] Zaki,N.M. Protein-Protein Interaction Prediction Using Homology and

Inter-domain Linker Region Information, Lecture Notes in Electrical

Engineering, Springer, 39, 2009, pp. 635-645.

[13] Sibai, F.N. ; Zaki, N., “Parallel protein sequence matching on

multicore computers”, Soft Computing and Pattern Recognition

(SoCPaR), 2010.

[14] http://www.bibalex.org/ISIS/Frontend/Projects/ProjectDetails.aspx

http://ieeexplore.ieee.org.journals.sti.sci.eg:2048/search/searchresult.jsp?searchWithin=Authors:.QT.Sibai,%20F.N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org.journals.sti.sci.eg:2048/search/searchresult.jsp?searchWithin=Authors:.QT.%20Zaki,%20N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org.journals.sti.sci.eg:2048/xpl/mostRecentIssue.jsp?punumber=5680735
http://ieeexplore.ieee.org.journals.sti.sci.eg:2048/xpl/mostRecentIssue.jsp?punumber=5680735
http://www.bibalex.org/ISIS/Frontend/Projects/ProjectDetails.aspx?%20th=a7Pg5AcpjauIQ1/Xoqw2GA==&id=m8fC7jXMTFprEy98pIPBFw==

