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Abstract— the application of inertial stabilization system is to stabilize the sensor’s line of sight toward a target by isolating the sensor 

from the disturbances induced by the operating environment. The aim of this paper is to present two axes gimbal system. The equations of 

gimbals motion are derived using Lagrange equation considering the base angular motion and mass unbalance. The stabilization loop is 

constructed by identifying its components, then the traditional and cascade loops are defined. The overall control system is built using the 

cross coupling unit and simulated in MATLAB for the traditional and cascade control loops. A comparison study is carried out to investigate 

the gimbal system performance under different operational conditions. The simulation results prove the efficiency of the proposed cascade 

control which offers a better response than the traditional one, and improves further the transient and the steady-state response.  

Index Terms— DC motor, Gimbal system, Inertial stabilization system, Inertial cross coupling, Line of sight, Rate gyro, Stabilization loop  

——————————      —————————— 

1 INTRODUCTION                                                                     

he optical equipments (such as IR, radar, laser, and televi-
sion) have found a wide use in many important applica-
tions, for example image processing, guided missiles, 

tracking systems, and navigation systems. In such systems, the 
optical sensor axis must be accurately pointed from a movable 
base to a fixed or moving target. Therefore, the sensor’s line of 
sight (LOS) must be strictly controlled. In such an environ-
ment where the equipment is typically mounted on a movable 
platform, maintaining sensor orientation toward a target is a 
serious challenge.  

An Inertial Stabilization Platform (ISP) is an appropriate 
way that can solve this challenge [1]. Usually, two axes gimbal 
system is used to provide stabilization to the sensor while dif-
ferent disturbances affect it. The most important disturbance 
sources are the base angular motion, the dynamics of gim-
balled system, and the gimbal mass unbalance. It is therefore 

necessary to capture all the dynamics of the plant and express 
the plant in analytical form before the design of gimbal as-
sembly is taken up [2]. The performance of a system depends 
heavily on the accuracy of plant modelling. A typical plant for 
such problems consists of an electro-mechanical gimbal as-
sembly having angular freedom in one, two or three axes and 
one or more EO sensors [3]. 

The control of such LOS inertia stabilization systems is not 
a simple problem because of cross-couplings between the dif-
ferent channels. In addition, such systems are usually required 
to maintain stable operation and guarantee accurate pointing 
and tracking for the target even when there are changes in the 
system dynamics and operational conditions. 

The mathematical model and the control system of two ax-
es gimbal system have been studied in many researches. Con-
cerning the mathematical model, several derivations have 
been proposed using different assumptions. In [4], the kine-
matics and geometrical coupling relationships for two degree 

of freedom gimbal assembly have been obtained for a simpli-
fied case when each gimbal is balanced and the gimballed el-
ements bodies are suspended about principal axes. 

[5] presented the equations of motion for the two axes gim-
bal configuration, based on the assumption that the gimbals 
are rigid bodies and have no mass unbalance. In [5], Extrand 
has shown that inertia disturbances can be eliminated by cer-
tain inertia symmetry conditions, and certain choices of inertia 
parameters can eliminate the inertia cross couplings between 
the channels of gimbal system. Both researches [4] and [5] 
mentioned above have not been simulated. A single degree of 
freedom (SDOF) gimbal operating in a complex vibration en-
vironment has been presented by Daniel in [6]. It has been 
illustrated how the vibrations excite both static and dynamic 
unbalance disturbance torques, which can be eliminated by 
statically and dynamically balancing the gimbal, which is re-
garded costly and time consuming [6]. 

In [7], the motion equations have been derived on the as-
sumption that gimbals have no dynamic mass imbalance, and 
the mass distribution of gimbals is symmetrical with respect to 
the frame axes considered. In addition, the effects of base an-
gular velocities were not highlighted. In [8], a two axes gimbal 
mechanism was introduced and just the modelling of azimuth 
axis was focused, the elevation angle was kept fixed and cross 
moments of inertia were taken to be zero. In both [5] and [9], 
the dynamical model of elevation and azimuth gimbals have 
been derived on the assumption that gimbals mass distribu-
tion is symmetrical with respect to the gimbals frame axes. 
Therefore, the products of inertia were neglected, and the 
model was simplified. It must be mentioned, that most of 
these researches considered that the elevation and azimuth 
channels are identical so that one axis was simulated and test-
ed. Therefore, the cross coupling, which is caused by base an-
gular motion and the properties of gimbal system dynamics, 
was ignored. Also, it was supposed that gimbals mass distri-
bution is symmetrical so the gimbals have not dynamic unbal-
ance. In addition, Newton’ law has been utilized to derive the 
mathematical model. 
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On the other hand, the control system of two axes gimbal 
configuration has been constructed using different control 
approaches. In [7], a proxy-based sliding mode has been ap-
plied on two axes gimbal system; also [10] proposed the slid-
ing mode control under the assumption of uncoupled identical 
elevation and azimuth channels. In [11], modern synthesis 
tools such as linear quadratic regulator (LQR) or linear quad-
ratic Gaussian with loop transfer recovery (LQG/LTR) control 
for a wideband controller have also been used in the line of 
sight stabilization for mobile land vehicle. Also, [12] presented 
a linear quadratic Gaussian (LQG) algorithm for estimating 
and compensating in real time a particular class of disturb-
ances. 

Besides conventional control methods mentioned above, 
some advance control techniques, such as fuzzy logical control 
(FLC) [13], robust control [14], variable structure control (VSC) 
[15], were also applied in LOS inertia stabilization systems 
during recent years. Also, the H∞ control methodology was 
used in [16] to design a high performance controller so as to 
control the rate of the line of sight. [17] Introduced an efficient 
full-matrix fuzzy logic controller for a gyro mirror line-of-sight 
stabilization platform. While a majority of these algorithms 
were complex and difficult to be realized, the conventional 
PID and its constructors are still the most used approach due 
to their simple structure, cheap costs, simple design and high 
performance [18]. 

In this paper, the two axes gimbal system is introduced. 
The gimbal system mathematical model is derived using 
Lgrange equation by considering the base angular motions, 
dynamics of gimballed system, and both static and dynamic 
gimbal mass unbalance. Also, the cascade control technique 
using PI controllers is introduced because of several practical 
advantages [19]. The well-known PI or more precisely the 
"Cascade PI" control is very attractive in terms of simplicity 
and popularity. 

The control aims are mainly to achieve good transient and 
steady-state performance against the change of base angular 
velocity, the change of base acceleration, and the gimbal mass 
unbalance. The paper is organized in the following manner. In 
section 2, the problem is formulated then the equations of 
gimbals motion are derived in section 3. Afterwards, the con-
cept of gimbal mass unbalance is highlighted in section 4. The 
traditional and cascade stabilization loops are investigated 
and constructed in section 5. Then, in section 6, the simulink 
model of two axes gimbal system is introduced and tested for 
variable base rates and accelerations. Finally, the conclusion 
remarks are highlighted in section 7. The full mathematical 
model derivation is illustrated in Appendices A, B. 

2 PROBLEM FORMULATION 

The stabilization is usually provided to the sensor by sus-
pending it on the inner gimbal of two axes gimbal system, as 
shown in Fig.1. Also, a rate gyro located on the inner gimbal is 
utilized to measure the angular rates in the two planes of in-
terest. The gyro outputs are used as feedback to torque mo-
tors, related to the gimbals, to provide boresight error tracking 
and stabilization against angular base motion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The overall control system is constructed utilizing two 

identical stabilization loops shown in Fig.2 for the inner (ele-
vation) and outer (azimuth) gimbals. 

 
 
 
 
 
 
 
 
 
This system aims to isolate the stabilized object (sensor) 

from the base rotation. Therefore, the inner gimbal angular 
velocities, which are the outputs of the control system, must 
be made zero. In other words, the sensor optical axis must be 
kept nonrotating in an inertial space despite torque disturb-
ances. The two control loops in elevation and azimuth chan-
nels are related to each other by the cross coupling unit which 
is built based on the relationships of torques affected on the 
two gimbals. The cross coupling express the properties of the 
gimbal system dynamics. It reflects the fact that the azimuth 
gimbal can affect on the elevation gimbal even when base 
body is nonrotating. Also, there is similar impact from the ele-
vation gimbal on the azimuth gimbal. As a result, the cross 
coupling may be defined as the effect on one axis by the rota-
tion of another [6]. 

The mass unbalance is a serious and inevitable imperfection 
that is encountred even in a well-designed gimbal system. The 
mass unbalance can cause disturbance torques on the gimbals 
when the base body is accelerating and rotating. Actually, to 
control a gimbal system and to provide stability to the sensor 
is a difficult task and it becomes more difficult especially 
when the gimbal system is utilized under variable operational 
conditions such as accelerations and angular velocities. In 
such operation environment, the drawback of the traditional 
stabilization loop shown in Fig.2 appears. Therefore, a cascade 
stabilization loop is suggested to solve this problem and guar-
antee high gimbal system performance according to desired 
requirements.        
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3 EQUATIONS OF GIMBALS MOTION   

In this paper a two axes gimbal system depicted in Fig.1 is 
considered. Three reference frames are identified as follows. 
Frame P fixed to the fuselage body with axes  , ,i j k , frame B 
fixed to the azimuth (outer) gimbal with axes  , ,n e k , and 
frame A fixed to the elevation (inner) gimbal with axes 

 , ,r e d . The r-axis coincides with the sensor optical axis. The 
k axis is pointing "downwards". The center of rotation is at the 
frame origin, which is assumed to be the same point for the 
three frames. The transformation matrices are obtained based 
on angles of rotation ε, η as follows  

cos sin 0 cos 0 sin

sin cos 0 , 0 1 0

0 0 1 sin 0 cos

B A

P BC C

   

 

 

   
   

  
   
      

 (1) 

Where 
B

PC is the transformation from frame P to frame B. 
Similarly, 

A

PC  is the transformation from frame B to frame A. 
The inertial angular velocity vectors of frames P, B, and A, 
respectively are 

, ,

pi Bn Ar

p B A

P I pj B I Be A I Ae

Bk Adpk
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 
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     

       
         

 (2) 

Where , ,pi pj pk   are the body angular velocities of 
frame P in relation to inertial space about i, j, and k axes re-
spectively, , ,Be Bn Bk   are the azimuth gimbal angular 
velocities in relation to inertial space about n, e, and k axes 
respectively, and , ,Ar Ae Ad   are the elevation gimbal an-
gular velocities in relation to inertial space about the r, e, and 
d axes respectively. Inertia matrices of elevation and azimuth 
gimbals are 

,

r re rd n ne nk

A B

inner re e de outer ne e ke

rd de d nk ke k

A A A B B B

J A A A J B B B

A A A B B B

   
   

 
   
      

 (3) 

Where , ,r e dA A A  are elevation gimbal moments of inertia 
about r, e, and d axes, , ,re rd deA A A  are elevation gimbal mo-
ments products of inertia, , ,n e kB B B   are azimuth gimbal 
moments of inertia about n, e, and k axes, and , ,ne nk keB B B  are  
azimuth gimbal moments products of inertia. Also, it is intro-
duced ELT as the total external torque about the elevation 
gimbal e-axis, and AZT as the total external torque about the 
azimuth gimbal k-axis. As mentioned above, the aim is to sta-
bilize the gimbal system LOS (r-axis) which means the angular 
velocities Ae and Ad , must be equal to zero. ,Ae Ad  can be 
measured by a rate gyro placed on the elevation gimbal. In 
general, Euler angles define the position between two related 
reference frames [21]. For the body fixed frame P and azimuth 
gimbal frame B with one angle  , these relations can be ob-
tained 

cos sin ( )

sin cos ( )

( )

Bn Pi Pj

Be Pi Pj

BK Pk

a

b

c
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 
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 (4) 

Similarly, between azimuth gimbal frame B and elevation 
gimbal frame A we have 

cos sin ( )

( )

sin cos ( )

Ar Bn BK

Ae Be

Ad Bn Bk

a

b

c

    

  
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 

 
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 (5) 

The orientation of the gimbal system in an inertial system is 
completely determined by four independent consecutive rota-
tions , , ,    where , ,   are the three Euler rotations of 
the azimuth gimbal and   is the elevation gimbal angle [5]. 
Then we can take these angles of rotations as the generalized 
coordinates in the Lagrange equations. The order of rotation is 
essential [5]. Fig.3 shows the order of consecutive Euler rota-
tions of the azimuth gimbal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By taking the rotations in the order roll   , elevation   , 
azimuth   followed by  , the generalized “forces” corre-
sponding to the coordinates   and   are the external tor-
ques AZT  and ELT  applied to the azimuth and elevation gim-
bals, respectively [5]. The kinetic energy of a rotating body is 
given by the scalar product [5]. 

;
2

H
T H J     (6) 

Where H is the angular momentum,   is the inertial an-
gular velocity of the body expressed in the body fixed frame, 
and J  is the inertia matrix of the body. Thus the total kinetic 
energy of the two axes gimbal system is given by the sum of 
kinetic energy of elevation and azimuth gimbals. 

2 2
A B

H H
T       (7) 

Inserting equations (2, 3) in (7) gives 
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 (8) 

Based on Fig.3 the azimuth gimbal angular velocities can be 
derived as follows 
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Fig. 3. Azimuth gimbal angular velocities. IJSER
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 (9) 

Using (9) and (5) in (8) give the kinetic energy as a function of 
the generalized coordinates and their time derivatives. Then, 
Lagrange equation can be formulated and equations of motion 
are obtained. 

3.1 Azimuth Channel Relationships 

The Lagrange equation for   is 

AZ

d T T
T

dt  

  
  

  
 (10) 

Where T is the kinetic energy given in (8) and AZT  is the total 
external torque about the azimuth gimbal k-axis. As derived in 
Appendix A, the equation of azimuth gimbal motion can be 
derived as a differential equation for azimuth gimbal rate Bk  

321 dddAzBkeq TTTTJ   (11) 

After some mathematical operations mentioned in appendix 
A, the equation (11) can be converted to the following form 

cos coseq Ad Az d dJ T T T       (12) 

The complete derivation of azimuth channel relationships is 
illustrated in Appendix A. 

3.2 Elevation Channel Relationships 

Similarly, Lagrange equation for   is 

EL

d T T
T

dt  

  
  

  
 (13) 

Where ELT is the total external torque about the elevation gim-
bal e-axis. Then the elevation gimbal motion equation is ob-
tained as a differential equation for the elevation rate Ae  in the 
following form 

2 2( ) ( )

( ) ( )

e Ae EL d r Ar Ad rd Ar Ad

de Ad Ae Ar re Ar Ae Ad

A T A A A

A A
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     

    

   
 (14) 

The complete derivation of elevation channel relationships 
is illustrated in Appendix B.  

4 GIMBAL MASS UNBALNCE   

4.1 Dynamic Mass unbalnce 

The dynamic mass unbalance is the result of a non-
symmetrical mass distribution called Product of Inertia (POI) 
[6]. The dynamic unbalance concept can be indicated by the 
inertia matrix. Therefore, if the considered gimbal has a sym-
metrical mass distribution with respect to its frame axes, then 
the gimbal has no dynamic unbalance and its inertia matrix is 
diagonal. On the other hand, if the gimbal has a non-
symmetrical mass distribution with respect to its frame axes, 
then the gimbal has dynamic unbalance and its inertia matrix 
is not diagonal. 

Actually, the same equations of motion for the azimuth 
gimbal (11) and elevation gimbal (14) have been obtained in 
[4], [5] using second Newton’s law. However, these equations 
in [4], [5] were simplified assuming that the gimbals have no 
dynamic mass unbalance, which means that all products of 

inertia are zero  0re rd de ne nk keA A A B B B      . There-
fore, the torque disturbance terms of elevation gimbal D ELT 

and azimuth gimbal D AZT   in [4], [5] were made less complex 
comparing to what has been carried out in this paper as it is 
clarified in Appendixes A and B. 

4.2 Static Mass unbalnce 

The static mass unbalance results from the offset between 
the pivot and the centre of gravity (CG). The applied accelera-
tion reacts through the offset CG and produces a torque about 
the pivot (disturbance torque). Therefore, the actual LOS devi-
ates from the desired LOS under acceleration forces. A correc-
tion torque (control torque) must be applied to prevent the 
gimbal deflection from its LOS [6]. Gimbal systems usually 
work in vibration environments which are characterized as a 
six degree of freedom (6 DOF); three of translational motion 
and three as angular motion. The angular degrees of freedom 
have little direct effect on the gimbal’s reaction to a static un-
balance; in this case, the mass properties driven response is 
mainly governed by inertia which serves to keep the gimbal 
pointed where it is. The modelled gimbal primarily responds 
to the three degrees of translational motion [6]. 

Ideally, the gimbal center of gravity (CG) is assumed to be 
precisely located at the pivot point. However, it is not always 
true in the actual hardware implementation. Thus, the CG 
location may displace from the pivot point [22]. In this paper, 
the disturbance torque due to static unbalance in elevation 
and azimuth gimbals is considered and obtained according to 
a reference frame XYZ on the assumption that the gimbal piv-
ot is placed at the base CG point. For the elevation gimbal, the 
vertical plane XY just considered because the gimbal CG off-
set, which lies on the rotation axis, does not create any torque 
on the pivot as shown in Fig.4a. Therefore, Fig.4b indicates 
that the horizontal plane XZ is considered for the azimuth 
gimbal 
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Based on what has been done in [22], the disturbance tor-
ques due to static unbalance in elevation and azimuth gimbals 
can be derived utilizing Euler equation for the variables 

,EL AZ  as follows 

 

 

cos

cos

S EL EL m EL m EL

S AZ AZ m AZ m AZ

T m a R

T m a R

  

  





  

  
 (15) 

Where, ST is the disturbance torque due to static unbalance, 

ma  the affected lateral acceleration, m the base body angle in 
vertical plane, m the base body angle in horizontal plane, m  
the mass of gimbal, R the gimbal offset distance,  the gimbal 
offset angle, and ,EL AZ are the index for elevation and azi-
muth gimbals respectively. It is worth mentioning that these 
disturbances disappear when the gimbal CG and gimbal pivot 
are exactly identical. 
 

5 STABILIZATION LOOP CONSTRUCTION   

In the following, the components of traditional stabilization 
loop indicated in Fig.2 will be identified. Although, the re-
searchers tried to utilize and apply many different modern 
techniques to control inertia stabilization systems, the conven-
tional PID and its constructors are often utilized because of its 
simplicity that makes it easy to be understood by the engi-
neers [23] and implemented easily in the control process. 
Therefore, two PI controllers have been utilized (one for each 
channel)  

12.5 12.5
( ) 0.09 , ( ) 0.5EL AZK s K s

s s
     (16) 

Any servo motion control system should have an actuator 
module that makes the system to actually perform its function. 
The most common actuator used to perform this task is the DC 
servomotor. DC motor is one of the simplest motor types. It is 
widely preferred for high performance systems requiring min-
imum torque ripple, rapid dynamic torque, speed responses, 
high efficiency and good inertia [24]. These motors speedily 
respond to a command signal by means of a suitable control-
ler. In this kind of motors, the speed control is carried out by 
changing the supply voltage of the motor [25]. The DC motor 
can be expressed in a block digram shown in Fig.5  

 
 
 
 
 
 
 
 
 
 
DC motor from NORTHROP GRUMMAN Company (Ta-

ble 1) is utilized in this paper. The transfer function of the DC 
motor can be obtained as follows 

   * *

2

( )
( )
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24637.68
; 0

1500 20942

m TM

m

a a a m m e TM

m

s K
G s

u s L s R J s a K K

a
s s




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   

 
 

 (17) 

 
Where m is the motor’s angular velocity, au the motor’s 

armature voltage, mT the torque generated by the motor, DT   
the torque disturbance. Also, m m LJ J J     and 

m m La a a   where LJ  is the platform’s moment of inertia, 

La is the load’s damping ratio. The platform (or what can be 
named the inertia) represents the motor load, which is at-
tached to the output of the gears or directly to the shaft motor. 

The platform is modelled based on its moment of inertia 

LJ that depends on its dimensions and its position respect to 
the axis of rotation. In this paper, a discus is proposed to rep-
resent the platform where its mass 1M kg  and radius 

14r cm  , so 
3 29.8 10 .LJ Kg m   . 

In this paper, the 475T rate gyroscope from the US Dynam-
ics company is considered. Table 2 indicates this gyro specifi-
cation. 

 
The rate gyro can be modelled in the second order system 

typically [26]. For the gyro of natural frequency 50n Hz 
and the damping ratio 0.7  , the gyro transfer function is 

2

2 2 2

2500
( )

( 2 ) ( 70 2500)

n

Gyro

n n

G s
s s s s



 
 

   
 (18) 

If gimbal design is not proper, the control algorithms may 
become complex and it may not be possible to meet the per-
formance criteria [27]. While the well-designed gimbal assem-

TABLE 2 
GYROSCOPE CHARACTERISTICS 

 

TABLE 1 
DC MOTOR SPECIFICATIONS 

 

TABLE 1 
DC MOTOR SPECIFICATIONS 

 

1

a aL S R

1

m mJ S a 
TMK

eK

 au

DT

mT m

Fig. 5. The block diagram of DC motor. 
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bly reduces the jitter of sensor’s line of sight and hence needs a 
simpler control system [3], [27] which simplifies the imple-
mentation of control laws in real time. As mentioned above, 
the drawback of the traditional stabilization loop appears 
when the control system work under variable conditions. 
Therefore, the cascade control technique is proposed. The tra-
ditional stabilization loop can be converted into cascade one 
by adding the following PI controller as shown in Fig.6.   

5
( ) 40PIG s

s
   (19) 

 
 
 
 
 
 

 

 

 

Where cmd  is the input rate command. The added PI control-

ler and DC motor constitute the inner feedback loop or sub-
block entitled modified DC motor. 

6 SIMULATION AND RESULTS   

Based on the gimbals mathematical model obtained above, 
the proposed cascade stabilization loop, and by taking into 
account the dynamic and static mass unbalance, the overall 
control system of the two axes gimbal system is constructed 
and simulated in MATLAB/Simulink environment as indicat-
ed in Fig.7.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to take the effect of base angular motion into ac-
count, the rates , must be fed back to the DC motors of  

 

 elevation and azimuth channels respectively through the mo-
tor electrical constant (back emf constant). 

Two tests will be made to carry out a comparison between 
the traditional and cascade stabilization loop in order to inves-
tigate the effects of the base rate and acceleration change on 
the performance of two axes gimbal system. 

6.1 Test 1: Base Rate Change 

This test is made according to many diffirent scenarios in-
dicated in Table 3 assuming that there is no acceleration ap-
plied on the gimbal system and for input rate commands 

10 deg secEL AZ    in elevation and azimuth channels re-
spectively.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3 
TEST 1 SCENARIOS  

 

cmd
 K s
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Fig. 6. The cascade stabilization loop. 
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Fig. 7. The cascade two axes stabilization loops. 

 
(a) traditional loop 

 

 

(b) cascade loop 

Fig. 8. The elevation loop response for differenet rates. 
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The tests results shown in Fig.8 and Fig.9 indicate that 
when the traditional control is used the response overshoot of 
elevation and azimuth channels increase as well as a steady 
state error appears and increases more and more whenever 
the base rate increases. On the other hand, it is realized that 
the cascade stabilization loop improves the performance of 
both channels by maintaining good response with fixed ac-
ceptable overshoot and without any steady state error. 

6.2 Test 2: Base Acceleration Change 

Equations 15 show that the torque disturbances due to stat-
ic mass unbalance increase sharply when the base acceleration 
increase. Therefore, the overall control system shown in Fig.7 
is tested for many diffirent accelerations assuming that the 
base angular velocitie are fixed. All the acceleration and rate 
values as well as other parameters considered in test2 are in-
dicated in Table 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 4 
TEST 2 PARAMETERS  

 

 
(a) traditional loop 

 
(b) cascade loop 

Fig. 9. The azimuth loop response for different rates. 
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(a) traditional loop 

 

(b) cascade loop 

Fig. 10. The elevation loop response for different accelerations. 
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(a) traditional loop 

 
(b) cascade loop 

Fig. 11. The azimuth loop response for different accelerations. 
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Fig.10 and Fig.11 show the effects of base acceleration 
change on the performance of gimbal system for traditional 
and cascade loops in both elevation and azimuth channels 
respectively. It is clear that utilizing the cascade stabilization 
loop causes a large improvement in the transient and steady 
state response for elevation and azimuth channels. The cas-
cade technique can dramatically reduce the overshoot and 
settling time in addition to eliminating the steady state error. 

It is important to test the performance of the cascade con-
trol technique when it is used to build the tracking system that 
works under variable accelerations. The tracking loop can be 
built as a closed feedback loop which includes the stabilization 
loop. For example, the construction of elevation tracking loop   
is displayed in Fig.12 where the stabilization loop is replaced 
by its equivalent closed loop transfer function  stabG s .      
 

 

 

 

 

 

 

The angle channel receiver may have unity transfer func-
tion and measures the pointing error between the output 
and the input LOS angle

EL . The time constant of the tracking 
loop T considered equals to 0.08 sec. Utilizing the structure in 
Fig.12, the simulink model of gimbal system shown in Fig.7 is 
developed into tracking system then test 2 is applied. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.13 and Fig.14 confirm that the cascade approach is very 

effective in improving the performance of tracking system 
against the base acceleration change especially the transient 
response which can be achieved in less settling time with zero 
overshoot comparing with traditional loop. Also, the steady 
state response is achieved using cascade technique with zero 
steady state error. 

7 CONCLUSION   

In this paper, the two axes gimbal system has been intro-
duced. The gimbals mathematical model has been derived 
using Lagrange equation. The complete gimbal system has 
been constructed by taking into account the base angular rates, 
the mass unbalance, and the cross coupling between elevation 
and azimuth channels. The gimbal system created in 
MATLAB/Simulink has been tested under variable rates and 
accelerations using both traditional and proposed cascade con-
trol techniques.  The results obtained have ensured the effi-
ciency of proposed cascade control which has offered better 
performance compared with the traditional control. The cas-
cade control has highly improved the transient and steady 
state response of the two axes gimbal stabilization system 
against the variable rates and accelerations. Also, when the 
cascade control has been used, the performance of two axes 
gimbal tracking system has been dramatically enhanced 
against the base acceleration change.  

 stabG s 1 s1 TsReceiver
EL

EL

Fig. 12. The elevation tracking loop. 

 
(a) traditional loop 

 
(b) cascade loop 

Fig. 13. The elevation tracking loop response for different accel-

erations. 
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(a) traditional loop 

 
(b) cascade loop 

Fig. 14. The azimuth tracking loop response for different accel-

erations. 
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Appendix A (Azimuth channel) 

 Utilizing (9) gives 
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 (A.1) 

Then from (5) and (9) we have 
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Using (A.1) and (A.2), the two terms in the left side of (10) are 

converted into 
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(A.4) 

Based on (A.3), (A.4), and (5) the equation of azimuth gimbal mo-
tion can be derived as a differential equation for azimuth gimbal 
rate Bk . 

321 dddAzBkeq TTTTJ   (A.5) 

Where. 1 2 3d d d dT T T T   .  represents different azimuth gimbal 
inertia disturbances, 

eqJ  is the instantaneous moment of inertia 
about the k-axis. All components are defined as follows 
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Inserting Bk obtained from (5c) in (A.5) converts it into a differ-
ential equation for the elevation rate Ad as follows 
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The disturbances affected on azimuth gimbal are denoted by 
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The term 1dT  well be denoted as 1D AZT  . Then, using Bn  from 
(4a), Bk from (5c), Be from (4b), and (5b) the terms 2dT  and 3dT  

are modified into 2D AZT   and 3D AZT    respectively. 
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From (5a) we have 
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Using Bk from (5c), Bn from (4a), and Ar from (A.14), the term 
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Appendix B (Elevation channel) 

The kinetic energy for elevation gimbal is 
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 

  

 (B.1) 

From (5) we have 

0 , 1 , 0

, 0 ,

Ae AdAr

Ae AdAr

Ad Ar

 

  

 
 

  

 
  

  

 
   

  

 (B.2) 
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T
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T
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   


   

  



  



  


  



 (B.3) 

Using (B-3) in (13) gives the elevation gimbal motion equation as 
a differential equation for the elevation angular velocity Ae  as 
follows 

2 2( ) ( )

( ) ( )

e Ae EL d r Ar Ad rd Ar Ad

de Ad Ae Ar re Ar Ae Ad

A T A A A

A A

    

     

    

   
 (B.4) 

It can be seen that the elements of inertia matrix form the disturb-
ance term D ELT  . 

2 2( ) ( )

( ) ( )

D EL d r Ar Ad rd Ar Ad

de Ad Ae Ar re Ar Ae Ad

T A A A

A A

   

     

    

   
 (B.5) 
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Using Bn  from (4a), Bk from (5c), and (5) converts the disturb-
ance term (B.5) as follows 

1 2 10....D EL D EL D EL D ELT T T T       (B.6) 

 1

2 2 sin

cossin cos

cos sin
k i j

Be Ad Be Bn

D EL de re

Be p p p

T A A

    

 

     


  
  
 
    

 (B.7) 

 2 cos sinD EL Be Bn de reT A A       (B.8) 

  2

3

1
2cos sin

cos
D EL d r Bn Ad BnT A A     




 
       

 
 (B.9) 

4 4 sinD EL rd Bn AdT A       (B.10) 
2

5 2D EL rd Bn AdT A tg     (B.11) 

2

6 2

1
2
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D EL rd AdT A 




 
  

 
 (B.12) 

  7 sin cos
kD EL p re deT A A        (B.13) 

2 2 2

8 2sinD EL rd BnT A tg  
      (B.14) 
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