
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1114
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A Metric for Accessing Black Box Component
Reusability
Navneet Kaur , Ashima Singh

Abstract— The Component Based Software Development (CBSD) approach is becoming the trend for software development. This approach is based
on developing the software from existing components instead of developing software from scratch everytime. The quality of resulting system depends
upon the complexity of the composed components. Because the component complexity is an important factor affecting the understandability, testability,
maintainability of resulting system. So it is necessary to select the less complex components which are more reusable, for Component Based Software
system. Thus evaluation of component complexity is a critical activity in the component selection process for CBSD. Although the researchers have pro-
posed a wide range of metrics for evaluating component complexity but many of the existing metrics are not appropriate for measuring component
complexity due to component’s black box nature. Thus in this paper an Interface Complexity metric for Black Box components, IC(BB), has been pro-
posed which is based on component interface specifications.

Index Terms— Black box component, CBSD, Component Complexity, complexity metrics, IC(BB), software complexity.

——————————  ——————————

1. INTRODUCTION

HE Component Based Software Development (CBSD)
approach is increasingly being adopted for software de-

velopment. CBSD approach is based on using the existing
components as building blocks for constructing software sys-
tems. CBSD provides many advantages like reduced devel-
opment time and effort, increased quality along with many
others. These advantages are mainly provided by the reuse of
already built-in software components. The following Fig.1
shows the technique for developing software from existing
components.

 .
 .
 .

 Fig. 1 Component based software development

 But it is necessary to measure the software complexity in each
software development approach because software complexity
affects many other aspects of software like development ef-
fort,cost, testability,maintainability etc. So many metrics have
been proposed for measuring software complexity. But tradi-
tional software product and process metrics are not sufficient
for measuring the component and Component Based Software
(CBS) complexity and most of the existing metrics are based
on source code. Thus CBSD provides one of the central prob-
lems in measuring component and CBS complexity. Measur-
ing component complexity plays an important role in deter-
mining CBS system complexity. Because complexity of CBS
system depends upon the complexity of its components . The
component complexity is an important factor affecting the
understandability, testability, maintainability etc of CBS sys-
tem . So it is necessary to select the less complex components
which are more reusable for CBS system. But now a days black
box components are being provided by component vendors
for reuse and most of the times source code is not provided
with components which creates difficulty in measuring com-
ponent complexity. In this paper a complexity metric named,
Interface Complexity metric for Black Box components, IC
(BB) has been proposed. The proposed metric is based on the
component interface specification and
concept of assigned weights.

2. BRIEF STUDY OF EXISTING METRICS
In this section some existing complexity metrics have been
discussed that are relevant for measuring component com-
plexity.

T

————————————————
• Navneet Kaur is currently pursuing masters degree in M.E.(CSE) in

Thapar University, India, E-mail: navirathour27@gmail.com
• Ashima Singh is an Assistant Professor in Computer Science and Engi-

neering Department , Thapar University, India,
E-mail: ashima@thapar.edu

Component
Repository Component 2

 Component n

 Software
 System

 Assemble Select

 Component 1

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1115
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 2.1 Object Oriented Metrics
There are many object oriented metrics that can be used to
measure the component complexity . Some of the existing
metrics[6,16], have been discussed below:

 Metric 1: Weighted Methods Per Class (WMC)
WMC gives the combined complexity of local methods in a
given class. The greater value of this metric shows more com-
plexity, increase in testing effort and decrease in understanda-
bility.

Metric 2: Depth of Inheritance (DIT)
DIT metric is for class . It gives maximum length from the
class node to root. More length means more complexity.

Metric 3: Response For Class (RFC)
The RFC metric gives the number of methods that can be
invoked in response to a message sent to an object within this
class ,using to one level of nesting.

Metric 4: Coupling Between Objects (CBO)
For a given class, this metric measures the number of other
classes to which the class is coupled. High value of this metric
shows the poor design, difficulty in understanding, decrease
in reuse and increase in maintenance effort.

Metric 5: Lack of Cohesion Method (LCOM)
The cohesion of a class is characterized by how closely the
local methods are related to the local instance variables in the
class. LCOM is defined as the number of disjoint sets of local
methods. High value of this metric shows good class subdivi-
sion.

Metric 6: Number of Children (NOC)
NOC is based on a node (class) of inheritance tree. This metric
gives the number of immediate successors of the considered
class. High value of this metric shows more reuse, poor design
and increase in testing effort.

Metric 7: Lines of Code (LOC)
LOC is based on the size of methods. It gives measure of
physical lines , statements , and/or comments. High value of
this metric shows more complexity .

Metric 8: Cyclomatic Complexity (CC)
Cyclomatic Complexity measures the complexity of methods.
It gives the measure of independent algorithmic test paths.
More independent paths means more testing effrot.

2.2 Metrics for the Integration of Software Compo-
nents

Narasimhan and Hendradjaya proposed the following
complexity metrics[8] that have been widely accepted .

a) Metric 1: Component Packing Density (CPD)
The CPD metric measures the component constituents to the
number of integrated components. This metric is used to
identify the density of integrated components. Thus, a higher
density represents a higher complexity.

 #< Constituent>
 CPD< constituent_type> =
 # Components

Where #<Constituent> is the number of lines of code, opera-
tions, classes, and/or modules in the related components.

b) Metric 2: Component Interaction Density (CID)
The CID metric measures the ratio of actual number of interac-
tions to the available number of interactions in a component.

 #I
 CID =
 # Imax

Where #I and #Imax represents the number of actual interac-
tions and maximum available interactions respectively. When
the density of interaction increases, complexity increases.

Metric 3: Component Incoming Interaction Density (CIID)
The CIID metric measures the ratio of actual number of in-
coming interactions to the maximum available incoming inter-
actions in a component.

 # Iin
 CIID =
 # Imax_in

Where # Iin and # Imax_in represents the actual number of
incoming interactions and maximum number of incoming
interactions available in a component respectively . High den-
sity shows that a particular component requires so many inter-
faces.

Metric 4: Component Outgoing Interaction Density (COID)
The COID metric measures the ratio of actual number of
outgoing interactions to the maximum number of outgoing
interactions available in a component.

 # Iout
 COID =
 # Imax_out

Where # Iout and # Imax_out represents the actual number of
outgoing interactions used and maximum number of out-
going interactions available in a component respectively.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1116
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Metric 5: Component Average Interaction Density (CAID)
The CAID metric is a sum of interaction densities for each
component divided by the number of components in software
system .

 n CIDn
 CAID = ∑
 i=1 # Components

Where, ∑ CIDn represents the sum of interaction densities for
components 1...n and # components represents the number of
existing components in the software system.

c) Criticality Metrics
Metric 6: Link Criticality Metric (CRITlink)
Link Criticality metric is defined as the number of compo-
nents which have links more than a threshold value.

 CRITlink = # linkcomponents

Where # linkcomponents represents the number of compo-
nents, with their links more than a critical value. The threshold
is considered as 8 links.

Metric 7: Bridge Criticality Metric (CRITbridge)
Bridge Criticality metric is defined as the number of bridge
components in a component assembly.

 CRITbridge = # bridge_component

Where # bridge_component represents the number of bridge
components . A bridge component may be defined as a com-
ponent which links two or more components/ application. If
there is a defect in bridge, the whole application might mal-
function. More number of bridge components means more
chances of failure.

Metric 8: Inheritance Criticality Metric (CRITinheritance)
Inheritance Criticality metric is defined as the number of
components, which become root or base for other inherited
components.

 CRITinheritance = # root _ component

Where # root_component represents the number of root com-
ponents which has inheritance. It is the number of components
which act as a parent/root/base for other components .

Metric 9: Size Criticality Metric (CRITsize)
 Size Criticality metric is defined as below :

 CRITsize = # size_component

Where # size_component represents the number of compo-
nents which exceed a given critical size value. The size is de-
fined in terms of LOC, number of classes, operations and
modules in the application.

Metric 10: # Criticality Metric
The #Criticality Metric (CRITall) is defined as the sum of all
critical metrics.

CRITall = CRITlink + CRITbridge + CRITinheritance + CRIT-

size

d) Triangular Metrics
Component Packing Density (CPD) , Component Average In-
teraction Density (CAID), Component Criticality (CRITall)
metrics are considered as 3 axes which can be further modi-
fied as 2 axes diagrams with CPD and CAID. For different
values varying as high and low for the 2 axes, different cases
are considered as the behaviors vary for different systems
based on real time, business type etc.

e) Dynamic Metrics
These metrics are collected during the execution time. These are
not available during the design phase as they are collected dynam-
ically. These metrics are used for maintenance purposes.

2.3 Limitations of Existing Metrics
• Most of the existing metrics are applicable to small pro-

grams or components, The objective of having metrics is
to test the behavior, reusability, and reliability of the
components when placed in a large system.

• Some metrics like WMC, CC, LOC, CRITsize etc depend
upon the availability of source code or internal details of
component , these kind of metrics can not be applied for
determining black box component complexity because of
unavailability of source code. So there is a need of com-
plexity metric for black box component because a num-
ber of existing metrics can not be applied directly.

In this paper a metric has been proposed which measures the
complexity of a black box component on the basis of compo-
nent interface specification.

3. PROPOSED WORK

Interfaces are the access points of a component, through which
a component can request a service declared in an interface of
the service providing component. Mathematically, interface
complexity is defined as sum of complexity of the interface
methods. The complexity of interface method depends on its
nature. The nature of the interface method can be determined
on the basis of number and type of arguments and return
type. Rotaru et al.(2005) considered the interface methods
complexity to determine the composability of the component.
The components interfaced by methods having no return val-
ue and no parameter will have biggest composability degree
because it does not have any external dependency. The inter-
face methods having no parameter value but having return
value will have less composability degree and the interface
methods having the parameters as well as return value will

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1117
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

cause in lowest composability degree.

We extended the approaches described in(Rotaru et al., 2005;
Gill and Grover, 2004; Boxall and Araban,2004;) while propos-
ing a new interface method complexity metric for components.
We propose that the interface method complexity depends
upon the return type, number and type of parameters and the
number of parameter incompatibilities which arise when the
parameters are passed between the components. Thus an In-
terface Method Complexity Metric (IMCM) has been proposed
as below :

 IMCM = Wr + PCM(M) + Number of parameter incompatibil-
ities

Where Wr is the weight assigned to return type , PCM(M) is
the Parameter Complexity Metric for method , which deter-
mine the complexity caused by parameters of method.
 n
PCM(M) = ∑ Wp(Pi)
 i=1

Where Wp(Pi) is the weight assigned to the ith parameter of
the method on the basis of its data type , n represents the
number of parameters in a method.

Thus by using the mathematical definition of Interface Com-
plexity, a metric named Interface Complexity metric for Black
Box components ,IC(BB) , has been proposed for determining
the interface complexity.

 m
 IC(BB) = ∑ IMCMi
 i=1

Where IMCMi is the interface method complexity of ith
method in interface and m represents the number of methods
in component interface.

The interface methods can be divided in the following cate-
gories:

• Interface methods having no return value and no pa-
rameters.

• Interface methods having return value but no param-
eters .

• Interface methods having no return value but having
parameters.

• Interface methods having return value as well as pa-
rameters

The complexity of the interface methods can be measured on
the basis of data types of return value and parameters, and on
the basis of number of parameter incompatibilties . On the basis
of data types of return value and parameters , and by consider-
ing the number of parameter incompatibilities for a method ,
some weight values will be assigned to the interface method
which will show its complexity.

The data types can be divided in the following categories:
• Very simple includes integer,float,double,boolean etc.
• Simple includes structure data types.
• Medium includes class type and object type.
• Complex includes pointer and built in data types.
• Very complex includes user defined data types.

 The methods having no return value and no parameters
have been considered as simple methods and their weight
value has been assumed .025 . All other interface methods are
assigned weight values depending on the data types of pa-
rameters and return value . The Table I represents the weight
values assigned to different categories of data types for pa-
rameters and return values.

 We have included a factor in the existing approaches that
affects the complexity of interface methods and it will de-
crease the composability. This factor is parameter incompati-
bility. Because when the components are integrated with each
other then one component may pass the parameter to the an-
other component’s function but some times the data type of
the passed parameter may be different from the data type of
parameter declared in the function to which the parameter is
passed. Then there will be parameter incompatibility problem

 Table I. Represents the assigned weight values to the different categories of data types

.

For example, suppose return value of one component’s meth-

Parameter Type
,Return Value Type

Very Simple Simple Medium Complex Very Complex

Assigned
 Weight

 .10 .20 .30 .40 .50

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1118
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

od is passed to the another component’s method as a parame-
ter to perform its task, but if their data types are different then
there will be parameter incompatibility problem. So the return
value must be converted in the required form before passing
as a parameter to second component’s method(i.e it needs
adaption.). More number of incompatibilities result in more
difficulty for using component interface method. It will reduce
the understandability of method’s behavior but it will increase
integration complexity to connect the component with other
components to provide accurate functionality. Thus it will be
more difficult to use the component.

4. CASE STUDY
 In order to validate the proposed metric, we have considered
a case study of Student Information (SI) system from which
the students of different departments can receive information
about their marks details, fee details and course details . This
system has been developed by integrating the components.

This system has been represented in the form of class diagram
as shown below in Fig.2. The class name shows the component
name and we have considered only the business methods in
our case study. For simplicity we have considered only one
parameter in the business methods, in order to validate the
metric.

 Description of working of Student Information System

 The system is composed of eight components and their

working has been described as below:

 Login Component : This component checks the password
entered by the user in order to authenticate the user. If the
password is correct then it will return value 1 otherwise it will
return value 0. The return value will be passed to the second
and third method of component named Student_Info_System.

 Fig 2. Class diagram of Student Information System

 Student_Info_System

+ Student_Info _System()
+ Information_Branch_Info(int)
+Select_Field (int): char

 Fee_Details_Branch

+Confirm_Fee_Field (int)
+Select_Fdepartment(): int

 Marks _Details_Branch

+Confirm_Marks_Field(int)
+Select_Mdepartment (): Int

 Course_Details_Branch

+Confirm_Course_Field(int)
+Select_Cdepartment():int

 View_Fee_Details

+CSE_Fee_Details(int)
+ECE_Fee_Details(int)
+MEC_Fee_Details(int)
+Fee_Detail_Notice()

 View_Marks_Details

+CSE_Marks_Details(int)
+ECE_Marks_Details(int)
+MEC_Marks_Details(int)
+Marks_Detail_Notice()

 View_Course_Details

+CSE_Course_Details(int)
+ECE_Course_Details(int)
+MEC_Course_Details(int)

 Login

+Check_Password():int

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1119
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Student_Info_System Component : This component provides
the information about the system’s working, information
about the various information branches .The third method of
this component provides the options to the user to select the
branch from which the user want to get information. The se-
cond and third method will perform their actions only if the
password is correct. This component passes F,M,C if user want
to get information about fee details, marks details and course
details respectively, for the confirmation of the selected branch
. But the components Fee_Details_Branch,
Marks_Details_Branch and Course_Details_Branch accept the
integer value for the confirmation of the selected branch .Thus
when this component is used three parameter incompatibili-
ties are caused which will make it difficult to use the method.
It will also reduce the composability.

Fee_Details_Branch Component : The first method of this
component confirms the selected branch from which the user
want to get information. If user has selected fee details branch
to get information then it will return 1 other wise 0. Second
method of this component displays list of departments from
which the user can select any department for which the user
want to check fee_details. This component will pass 1,2,3 ,for
CSE, ECE, and MEC departments respectively, to the
View_Fee_Details Component. When this component is used
it will create one parameter incompatibility because compo-
nent Student_Info_ System passes the char parameter but the
Fee_Details_Branch component takes the integer parameter to
confirm the selcted branch .

View_Fee_Details Component : 1,2,3 values are passed to this
component when the user want to view fee details of CSE,
ECE and MEC departments respectively . The
Fee_Details_Branch component passes the integer value for
the selected department to the View_Fee_Details component
and this component also accept the integer value to confirm
the selected department. Because the passed parameter and
received parameter data types are same so this component
does not create any incompatibility problem.

 Marks_Details_Branch and Course_Details_Branch Com-
ponents act same like Fee_Details_Branch component .
View_Marks_Details and View_Course_Details components
act same like View_Fee_Details component.

Thus from the above information the interface complexity
can be calculated for each component in the Student Infor-
mation System by using the IC(BB) Metric .

Interface Complexity of Student_Info_System Component

IMCM value for first method = 0.025 , because this method is a
simple method which does not have any parameter or return
value .

 IMCM value for second method = 0.10 = 0.10

 IMCM value for third method = 0.10 + 0 .10 + 3 = 3. 20

 Thus IC(BB) = .025 + 0.10 +3.20 = 3.325

 Similarly the interface complexity of other components can be
calculated. The following Table II shows the value of IC(BB)
for each component in SI system.

Table II. Representing Value of IC(BB) for each component in
SI system

 Component Name IC(BB)
Login 0.10

Student _Info_System 3.325

Fee_Details_Branch 1.20

Marks_Details_Branch 1.20

Course_Details_Branch 1.20

View_Fee_Details 0.325

View_Marks_Details 0.325

View_Course_Details 0.30

In order to validate the proposed metric , an another metric
named Self-Completeness of Component’s Parameter (SCCp)
defined by Washizaki et al. [13] has been used . SCCp metric is
used in determining the external dependency of Java Beans
components which are black box in nature. Because we are
considering the black box components in our case study, so
this metric is also applicable in our case.

Definition of SCCp : Self-Completeness of Component’s Pa-
rameter

 SCCp(c) is the percentage of business methods without any
parameters in all business methods implemented within a
component c :

imp

Where Bp(c) : number of business methods without parame-
ters in c.

 SCCp indicates the component’s degree of self-completeness,
and the low degree of external dependency for users of the

component. Simply, the smaller the number of business meth-
ods without parameters, the more the possibility of having
dependency outside the component which shows the more

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1120
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

complexity for component usage. The following Table III
shows the value of SCCp metric for each component in SI Sys-
tem .

 Table III. Representing the value of SCCp metric for each
component in SI System

 Component Name SCCp

Login 1

Student_Info_System 0.333

Fee_Details_Branch 0.5

Marks_Details_Branch 0.5

Course_Details_Branch 0.5

View_Fee_Details 0.25

View _Marks_Details 0.25

View_Course_Details 0

A correlation analysis has been carried out for Interface com-
plexity metric IC(BB) and Self-Completeness of Component’s

Parameter (SCCp) by using the Karl Pearson Coefficient of
Correlation. The formula for calculating the Karl Pearson Cor-
relation Coffecient is as below:

This vlaue of Coefficient shows the relation between two vari-
ables. The negative value of this Coefficient shows the nega-
tive relation between two variables, means increase in one var-
iable decreases the value of another variable and vice versa.
The following Table IV shows the calculations for Karl Pearson
Coefficient. In our case IC(BB) and SCCp represents X and Y
respectively.

 Table IV. Representing the calculations for Karl Pearson Coefficient

Component Name X= IC(BB) Y= SCCp X2 Y2 XY

Login Component 0.10 1 0.01 1 0.10

Student_I nfo_System 3.325 0.333 11.056 0.111 0.107

Fee_Details_Branch 1.20 0.5 1.44 0.25 0.6

Marks_Details_Branch 1.20 0.5 1.44 0.25 0.6

Course_Details_Branch 1.20 0.5 1.44 0.25 0.6

View_Fee_Details 0.325 0.25 0.106 0.0625 0.08125

View_Marks_Details 0.325 0.25 0.106 0.0625 0.08125

View_Course_Details 0.30 0 0.09 0 0

∑X = 7.98

∑Y= 3.33

∑X2 = 15.69

∑Y2 = 1.986

∑XY = 2.1695

By putting all the values in the formula for Karl Pearson Cor- relation Coefficient , we get the value of Karl Pearson Correla-

IJSER

http://www.ijser.org/
http://tutorskingdom.com/wp-content/uploads/2011/08/untitled55.jpg
http://tutorskingdom.com/wp-content/uploads/2011/08/untitled55.jpg
http://tutorskingdom.com/wp-content/uploads/2011/08/untitled55.jpg�
http://tutorskingdom.com/wp-content/uploads/2011/08/untitled55.jpg�

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1121
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

tion Coefficient. In our case the value of Karl Pearson Correla-
tion Coefficient is (- 0.432) which shows the negative relation-
ship between IC(BB) and SCCp. It means if the value of IC(BB)
increases then value of SCCp decreases which shows the more
external dependencies, which cause more difficulty in compo-
nent use and decrease its reusability. Thus we can say that the
high value of IC(BB) for any component shows more complex-
ity , which causes decrease in reusability, understandability
and increase in integration and testing effort.

5. CONCLUSION

Although the Component Based Software Development is in-
creasingly being adopted for software development. But
measuring the black box component complexity during com-
ponent selection , for selecting a less complex and more reusa-
ble component , is still a difficult task. Because most of the
existing component complexity metrics, as discussed in sec-
tion II, can not be applied directly for determining the compo-
nent complexity. So in this paper a metric named Interface
Complexity Metric for Black Box components, IC(BB), has
been proposed which is based on component interface specifi-
cation. This metric will help an application developer in select-
ing a less complex and more reusable component during the
selection of components for CBSD. This will help in reducing
the integration and testing effort

REFERENCES
[1] Navneet Kaur, Ashima Singh, “Generating More Reusable

Components while Development: A Technique ,” Interna-
tional Journal of Innovative Technology and Exploring En-
gineering , Volume-2, Issue-3, February 2013.

[2] Sandeep Khimta, Parvinder S. Sandhu and Amanpreet Singh
Brar, “A Complexity Measure for JavaBean based Software
Components,” World Academy of Science, Engineering and
Technology,2008.

[3] Ben Whittle and Mark Ratcliffe, “Software Component In-
terface Description for Reuse,” Software Engineering Jour-
nal, November 1993.

[4] Ben Whittle and Mark Ratcliffe, “Software Component In-
terface Description for Reuse,” Software Engineering Jour-
nal, November 1993.

[5] Luiz Fernando Capretz and Miriam A. M. Capretz, “Compo-
nent-Based Software Development,” The 27th Annual Con-
ference of the IEEE Industrial Electronics Society,2001.

[6] Chidamber, S. R., Kemerer and C.F, “A Metrics Suite for
Object Oriented Design,” IEEE Transactions on Software
Engineering, pp. 476-49,1994.

[7] Sedigh Ali, S Gafoor, A. Paul and Raymond A., “Software
Engineering Metrics for COTS-based Systems,” IEEE Com-
puter, May 2001. pp 44-50.

[8] V. L. Narasimhan and B. Hendradjaya, “A New Suite of Met-
rics for the Integration of Software Components,” University
of Newcastle , Australia.

[9] Nasib S. Gill and P. S. Grover, “Few important considera-
tions for deriving interface complexity metric for compo-
nent-based systems,” ACM SIGSOFT Software Engineering

Notes, Volume 29, March 2004.
[10] Seyyed Mohsen Jamali, “Object Oriented Metrics,” Depart-

ment of Computer Engineering ,Sharif University of Tech-
nology, January 2006.

[11] Li, “Object-oriented metrics that predict maintainability,”
Journal of Systems and Software, Volume 23, Issue 2, pg:
111-122, 1993, .

[12] Nael Salman, “Complexity Metrics As Predictors of Main-
tainability and Integrability of Software Components,” Jour-
nal of Arts and Sciences, 2006.

[13] Hironori Washizaki, Hirokazu Yamamoto and Yoshiaki Fu-
kazawa, “A Metrics Suite for Measuring Reusability of
Software Components,” Department of Computer Science,
Waseda University,Japan.

[14] Parvinder Singh Sandhu and Dr. Hardeep Singh, "A Critical
Suggestive Evaluation of CK Metric,” Guru Nanak Dev En-
gineering College, Ludhiana,Punjab.

[15] Rajender Singh Chillar, Priyanka Ahlawat and Usha Kumari,
“Measuring Complexity of Component Based System Using
Weighted Assignment Technique,” 2nd International Confer-
ence on Information Communication and Management, Sin-
gapore,2012.

[16] P. K. Suri and Neeraj Garg, “ Software Reuse Metrics:
Measuring Component Independence and its applicability in
Software Reuse,” IJCSNS International Journal of Computer
Science and Network Security, VOL.9 No.5, May 2009.

[17] Octavian Paul Rotaru and Marian Dobre, “ Reusability Met-
rics for Software Components,” The Computer Science and
Engineering Department , University "Politehnica" of Bu-
charest, Romania.

[18] Marcus A. S. Boxall and Saeed Araban, “Interface Metrics
for Reusability Analysis of Components,” Department of
Computer Science & Software Engineering, The University
of Melbourne,2004.

[19] N. S. Gill and P.S.Grover, “ Component-Based Measure-
ment: Few Useful Guidelines,” ACM SIGSOFT SEN Vol-
ume 28 No. 6, pp. 30,2003.

IJSER

http://www.ijser.org/

	1. Introduction
	2.1 Object Oriented Metrics
	2.2 Metrics for the Integration of Software Components
	Narasimhan and Hendradjaya proposed the following complexity metrics[8] that have been widely accepted .

	References

