
International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014                                                                                                      1022 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

A Hybrid Approach of Compiler and Interpreter 
Achal Aggarwal, Dr. Sunil K. Singh, Shubham Jain 

 

Abstract— This paper essays the basic understanding of compiler and interpreter and identifies the need of compiler for interpreted 
languages. It also examines some of the recent developments in the proposed research. Almost all practical programs today are written in 
higher-level languages or assembly language, and translated to executable machine code by a compiler and/or assembler and linker. Most 
of the interpreted languages are in demand due to their simplicity but due to lack of optimization, they require comparatively large amount 
of time and space for execution. Also there is no method for code minimization; the code size is larger than what actually is needed due to 
redundancy in code especially in the name of identifiers. 

Index Terms— compiler, interpreter, optimization, hybrid, bandwidth-utilization, low source-code size.   

——————————      —————————— 

1 INTRODUCTION                                                                     

order to reduce the complexity of designing and building 
computers, nearly all of these are made to execute relatively 

simple commands (but do so very quickly). A program for a 
computer must be built by combining some very simple com-
mands into a program in what is called machine language. 
Since this is a tedious and error prone process most program-
ming is, instead, done using a high-level programming lan-
guage.  

Programs are usually written in high level code, which has 
to be converted into machine code for the CPU to execute it. 
This conversion is done by either a compiler (or a linker) or an 
interpreter, the latter generally producing binary code, ma-
chine code, that can be processed to be directly executable by 
computer hardware but compilers will proceed usually by 
first producing an intermediate binary form called object code. 
This language can be very different from the machine lan-
guage that the computer can execute, so some means of bridg-
ing the gap is required. This is where the compiler and inter-
preter come in. 

2 COMPILER 
A compiler [1] translates (or compiles) a program written in a 
high-level programming language that is suitable for human 
programmers into the low-level machine language that is re-
quired by computers. During this process, the compiler will 
also attempt to spot and report obvious programmer mistakes. 
Using a high-level language for programming has a large im-
pact on how fast programs can be developed. The main rea-
sons for this are: 

• Compared to machine language, the notation used by 
programming languages closer to the way humans 
think about problems. 

• The compiler can spot some obvious programming 
mistakes. 

• Programs written in a high-level language tend to be 
shorter than equivalent programs written in machine 
language. 

• Another advantage of using a high-level level lan-
guage is that the same program can be compiled to 
many different machine languages and, hence, be 
brought to run on many different machines. 

 
On the other hand, programs that are written in a high-level 
language and automatically translated to machine language 
may run somewhat slower than programs that are hand-coded 
in machine language. Hence, some time-critical programs are 
still written partly in machine language. A good compiler will, 
however, be able to get very close to the speed of hand-written 
machine code when translating well-structured programs. 

3 THE PHASES OF COMPILER 

Since writing a compiler is a nontrivial task, it is a good idea to 
structure the work. A typical way of doing this is to split the 
compilation into several phases [2] with well-defined interfac-
es. Conceptually, these phases operate in sequence (though in 
practice, they are often interleaved), each phase (except the 
first) taking the output from the previous phase as its input. It 
is common to let each phase be handled by a separate module. 
Some of these modules are written by hand, while others may 
be generated from specifications. Often, some of the modules 
can be shared between several compilers. 
 
A common division into phases is described below. In some 
compilers, the ordering of phases may differ slightly, some 
phases may be combined or split into several phases or some 
extra phases may be inserted between those mentioned below.  
 

I 

—————————————————————————— 
• Achal Aggarwal is currently pursuing bachelors degree program in computer 

science and engineering in Bharati Vidyapeeth’s College of Engineering, New 
Delhi, India. E-mail: theachalaggarwal@gmail.com 

• Dr. Sunil K. Singh is professor at computer science and engineering department 
in Bharati Vidyapeeth’s College of Engineering, New Delhi, India. E-mail: 
sunil.singh@bharatividyapeeth.edu 

• Shubham Jain is currently pursuing bachelors degree program in computer 
science and engineering in Bharati Vidyapeeth’s College of Engineering, New 
Delhi, India. E-mail: spvr.shubham@gmail.com 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014                                                                                                      1023 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

Lexical analysis: This is the initial part of reading and analyz-
ing the program text. The text is read and divided into tokens, 
each of which corresponds to a symbol in the programming 
language, e.g., a variable name, keyword or number. 
 
Syntax analysis: This phase takes the list of tokens produced 
by the lexical analysisand arranges these in a tree-structure 
(called the syntax tree) that reflects thestructure of the pro-
gram. This phase is often called parsing. 
 
Type checking : This phase analyses the syntax tree to deter-
mine if the program violates certain consistency requirements, 
e.g., if a variable is used but not declared or if it is used in a 
context that does not make sense given the typeof the variable, 
such as trying to use a boolean value as a function pointer. 
 
Intermediate code generation: The program is translated to a 
simple machine independent intermediate language. The 
symbolic variable names used in the intermediate codeare 
translated to numbers, each of which corresponds to a register 
in thetarget machine code. 
 
Machine code generation: The intermediate language is trans-
lated to assembly language (a textual representation of ma-
chine code) for specific machine architecture. 
 
Assembly and linking: The assembly-language code is trans-
lated into binary representationand addresses of variables, 
functions, etc., are determined. 
 
 

 
 
The first three phases are collectively called the frontend of the 
compiler and the last three phases are collectively called the 
backend. The middle part of the compiler is in this context 
only the intermediate code generation, but this often includes 
various optimizations and transformations on the intermedi-

ate code. 
Each phase, through checking and transformation, establishes 
stronger invariants on the things it passes on to the next, so 
that writing each subsequent phase is easier than if these have 
to take all the preceding into account. For example, the type 
checker can assume absence of syntax errors and the code 
generation can assume absence of type errors. 
Assembly and linking are typically done by programs sup-
plied by the machine or operating system vendor, and are 
hence not part of the compiler itself, so we willnot further dis-
cuss these phases in this book. 

4 INTERPRETERS 
An interpreter is another way of implementing a program-
ming language. Interpretation shares many aspects with com-
piling. Lexing, parsing and type-checking are in an interpreter 
done just as in a compiler. But instead of generating code from 
the syntax tree, the syntax tree is processed directly to evalu-
ate expressions and execute statements, and so on. An inter-
preter may need to process the same piece of the syntax tree 
(for example, the body of a loop) many times and, hence; in-
terpretation is typically slower than executing a compiled pro-
gram. But writing an interpreter is often simpler than writing 
a compiler and the interpreter is easier to move to a different 
machine, so for applications where speed is not of essence, 
interpreters are often used.  

5 COMPILER VS INTERPRETER 
A Compiler and Interpreter both carry out the same purpose – 
convert a high level language (like C, Java) instructions into 
the binary form which is understandable by computer hard-
ware. They are the software used to execute the high level 
programs and codes to perform various tasks. Specific compil-
ers / interpreters are designed for different high level lan-
guages. However both compiler and interpreter have the same 
objective but they differ in the way they accomplish their task  
 
Compilation and interpretation may be combined to imple-
ment a programming language. The compiler may produce 
intermediate-level code which is then interpreted rather than 
compiled to machine code. In some systems, there may even 
be parts of a program that are compiled to machine code, 
some parts that are compiled to intermediate code, which is 
interpreted at runtime while other parts may be kept as a syn-
tax tree and interpreted directly. Each choice is a compromise 
between speed and space. Compiled code tends to be bigger 
than intermediate code, which tends to be bigger than syntax, 
but each step of translation improves running speed. 
 
Using an interpreter is also useful during program develop-
ment, where it is more important to be able to test a program 
modification quickly rather than run the program efficiently. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014                                                                                                      1024 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

And since interpreters do less work on the program before 
execution starts, they are able to start running the program 
more quickly. Furthermore since an interpreter works on a 
representation that is closer to the source code than is com-
piled code, error messages can be more precise and informa-
tive. 
Of course, in the real world there is actually more of a spec-
trum of possibilities available to the implementer of the lan-
guage system, lying somewhere between these two poles. Var-
ious tradeoffs between compilation speed, runtime speed, 
space usage, interactivity, and other factors all contribute to a 
rich spread of implementations in practice. 

6 RECENT DEVELOPMENT IN PROPOSED AREA 
6.1 PyPy 
It is a standard interpreter designed for optimizing the source 
code written in Python language. One of the advantages – in-
deed, one of the motivating goals – of the PyPy [3] standard 
interpreter (compared to CPython) is that of increased flexibil-
ity and configurability. 
One example of this is that it can provide several implementa-
tions of the same object (e.g. lists) without exposing any dif-
ference to application-level code. This makes it easy to provide 
a specialized implementation of a type that is optimized for a 
certain situation without disturbing the implementation for 
the regular case. 
Most of them are not enabled by default. Also, for many of 
these optimizations it is not clear whether they are worth it in 
practice for a real-world application (they sure make some 
micro benchmarks a lot faster and use less memory, which is 
not saying too much). Alternative object implementations are a 
great way to get into PyPy development since you have to 
know only a rather small part of PyPy to do them. 

6.2 Self-Optimizing AST Interpreters 
An abstract syntax tree (AST) interpreter [4] is a simple and 
natural way to implement a programming language. Howev-
er, it is also considered the slowest approach because of the 
high overhead of virtual method dispatch. Language imple-
menters therefore define bytecode to speed up interpretation, 
at the cost of introducing inflexible and hard to maintain 
bytecode formats. It presents a novel approach to implement-
ing AST interpreters in which the AST is modified during in-
terpretation to incorporate type feedback. This tree rewriting 
is a general and powerful mechanism to optimize many con-
structs common in dynamic programming languages. The 
system is implemented in Java and uses the static typing and 
primitive data types of Java elegantly to avoid the cost of 
boxed representations of primitive values in dynamic pro-
gramming languages. 

6.3 Optimizing Indirect Branch Prediction Accuracy in 
Virtual Machine Interpreters 

Interpreters [5] designed for efficiency execute a huge number 
of indirect branches and can spend more than half of the exe-
cution time in indirect branch mispredictions. Branch target 
buffers (BTBs) are the most widely available form of indirect 
branch predictions; however, their prediction accuracy for 
existing interpreters is only 2%–50%. There are two methods 
for improving the prediction accuracy of BTBs for interpreters: 
replicating virtual machine (VM) instructions and combining 
sequences of VM instructions into super instructions These 
techniques can eliminate nearly all of the dispatch branch 
mispredictions, and have other benefits, resulting in speedups 
by a factor of up to 4.55 over efficient threaded-code interpret-
ers, and speedups by a factor of up to 1.34 over techniques 
relying on dynamic super instructions alone. 

6.4 Google Clousure Compiler 
The Closure Compiler [6] is a tool for making JavaScript 
download and run faster. Instead of compiling from a source 
language to machine code, it compiles from JavaScript to bet-
ter JavaScript. It parses your JavaScript, analyzes it, removes 
dead code and rewrites and minimizes what's left. It also 
checks syntax, variable references, and types, and warns about 
common JavaScript pitfalls. The Closure Compiler reduces the 
size of your JavaScript files and makes them more efficient, 
helping your application to load faster and reducing your 
bandwidth needs. 

7 CONCLUSION 
It can be concluded that both Compiler and Interpreter have 
their own usage, merits and demerits. Both can function inde-
pendently, depending on the type of language it is working 
on, the usage, the requirements etc. Also it can be said that 
some phases of compiler like optimization [7] which the inter-
preter lacks can be worked upon and can be included in the 
interpreter to get the optimized results with low space usage 
and greater efficiency. The approach is based on the following 
research i.e. trying to make a compiler for interpreting lan-
guages like java script, python, perl etc. The project aims at 
optimizing the interpretation process. This includes significant 
reduction in both size and time complexity.  
Most of the interpreted languages are in demand due to their 
simplicity but due to lack of optimization, they require com-
paratively large amount of time and space for execution. Also 
there is no method for code minimization. The code size is 
larger than what actually is needed due to redundancy in the 
code especially in the name of identifiers. These problems are 
not encountered while compiling the code, so we aspire to 
design a Compreter which adds optimization phases of a 
compiler in production pipeline of interpreted code and then 
produces the optimized source code for the interpreted lan-
guage which will be optimized code in terms of running time 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014                                                                                                      1025 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

and memory space.  
For proof of concept, we intend to make a Compreter for sub-
set of JavaScript [8] and compare the performance with al-
ready existing technologies which includes the interpreter for 
JavaScript, which are already been designed to solve the pur-
pose. In terms of hybrid technology [9] our proposed solution 
to bridge the gap between compilers and interpreters is surely 
to increase power of computation at hardware level. 

REFERENCES 
[1] Dragon Book-Code Optimizations 

http://dragonbook.stanford.edu/lecture-notes/Stanford-
CS143/20-Optimization.pdf. 2014. 

[2] Compiler construction lecture notes 
http://www.personal.kent.edu/~rmuhamma/Compilers/compno
tes.html 

[3] PyPyTechnology:http://doc.pypy.org/en/latest/interpreter-
optimizations.html#introduction 

[4] Self Optimizimg AST:      
http://www.christianwimmer.at/Publications/Wuerthinger12a/ 

[5] Optimizing Indirect Branch Prediction Accuracy in Virtual Ma-
chine Interpreter 
https://www.scss.tcd.ie/David.Gregg/papers/toplas05.pdf  

[6] Google Closure Compiler Introduction 
https://developers.google.com/closure/?csw=1. 

[7] Original slides from Computer Systems: A Programmer's Per-
spective by Randal E. Bryant and David R. Randal E. Bryant  
and David R. O'Hallaron O'Hallaron “Code Optimization: Ma-
chine Independent Optimizations” 

[8] How JavaScript compilers work 
http://creativejs.com/2013/06/the-race-for-speed-part-2-how-
javascript-compilers-work/ 

[9] Sunil Kr.  Singh, R. K. Singh, M.P.S.  Bhatia “Performance Eval-
uation of Hybrid Reconfigurable Computing Architecture over 
Symmetrical FPGA” IJESA, doi:10.5121/ijesa.2012.2312, Vol.2, 
No.3, page 107-116, September 2012. 

IJSER

http://www.ijser.org/

	1 Introduction
	2 Compiler
	3 The phases of compiler
	4 Interpreters
	5 Compiler vs Interpreter
	6 Recent development in proposed area
	6.1 PyPy
	6.2 Self-Optimizing AST Interpreters
	6.3 Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters
	6.4 Google Clousure Compiler

	7 Conclusion
	References



