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New refined Model for Mechatronics design of
solar mobile robotic platforms

Farhan A. Salem

Abstract—This paper proposes a new generalized and refined model for Mechatronics design of Solar Electric Mobile Robotic Platforms (SEMRP) and some
considerations regarding design, modeling and control solutions. The proposed models are developed to help in facing main challenges in developing Mechatronics
mobile robotic systems, in particular; early identifying system level problems and ensuring that all design requirements are met, and developed to allow designer to
have the maximum output data to to select, design, tested and analyze overall SEMRP system and each subsystem outputs characteristics and response, for desired
overall and/or either subsystem's specific outputs, under various PV subsystem input operating conditions, to meet particular SEMRP system requirements and
performance. The proposed SEMRP system model consists of five main subsystems, each subsystem is mathematically described and corresponding Simulink sub-
model is developed, then an integrated model of all subsystems is developed, tested and evaluated for desired system requirements and performance, the obtained
results show the simplicity, accuracy and applicability of the presented models in Mechatronics design of SEMRP system applications, as well as, for application in

educational process.

Index Terms—Mechatronics, Solar Electric Mobile Robotic Platform (SEMRP), PV Panel, Modeling/simulation.

1. INTRODUCTION

The essential characteristic and the key to success in

Mechatronics design is a balance between two sets of skills
modeling/analysis and experimentation / hardware
implementation skills. Modeling, simulation, analysis and
evaluation processes in Mechatronics design consists of two
levels, sub-systems models and whole system model with
various sub-system models interacting similar to real
situation, the subsystems models and the whole system
model, are tested and analyzed for desired system
requirements and performance [1].
Mobile robot is a platform with a large mobility within its
environment (air, land, underwater) it is not fixed to one
physical location. Mobile robots have potential application
in industrial and domestic applications. Generally, Mobile
robots are a relatively new research area that is not
normally considered from several different perspectives.
Different researches on Mobile robots fundamentals,
mathematical and Simulation models can be found
including but not limited to in [1-22], most of it study
separate specific system or subsystem design, dynamics
analysis, control or application. Solar electric mobile
platform (SEMRP) system is relatively new field of mobile
robots and new research area, a generalized refined model
of overall SEMRP system that can represent the actual
system dynamics and that can be used in Mechatronics
mobile robotic system design is of concern.
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One of the simplest and most used structures in mobile
robotics applications, are the two-wheel differential drive
mobile robots shown in Fig. 1, it consists of a chassis with

¢

two fixed and in-lines with each other electric motors and
usually have one or two additional third (or forth) rear
wheel(s) as the third fulcrum, in case of one additional rear
wheel, this wheel can rotate freely in all directions, because
it has a very little influence over the robot’s kinematics, its
effect can be neglected [12]. Accurate designing and control
of mobile robot is not a simple task in that operation of a
mobile robot is essentially time-variant, where the
operation parameters of mobile robot, environment and the
road conditions are always varying, therefore, the mobile
robot as whole including controller should be designed to
make the system robust and adaptive, improving the
system on both dynamic and steady state performances. To
help in facing the two top challenges in developing
Mechatronics systems; early identifying system level
problems to optimize system level performance to meet the
design requirements and ensuring that all design
requirements are met, as well as, while maintaining desired
accuracy, to simplify and accelerate Mechatronics design
process of mobile robots, including proper selection,
analysis, integration and verification of the overall system
and sub-systems performance throughout the development
process, this paper extends writer's previous works [15-16]
[23-27] and proposes new generalized and refined model
for Mechatronics design of SEMRP system, the proposed
model is to be developed to allows designer to have the
maximum output data to select, integrate, tested and
analyze the SEMRP system for desired overall and/or either
subsystem's outputs under various PV system operating
conditions, to meet particular SEMRP system requirements.
The proposed SEMRP system and its block diagram
representation are shown in Fig. 1(a)(b), the SEMRP system
consists of five main subsystems including; PV panel,
DC/DC converter, mobile platform, actuator, control unit ,
each subsystem, to be mathematically described and
corresponding Simulink sub-model developed , then an
integrated design of all subsystem is to be developed, the
subsystems models and the whole SEMRP system model,
are to be tested and analyzed for desired system
requirements and performance
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2. SEMRP system modeling

The proposed SEMRP system and block diagram
representation is shown in Fig. 1(a)(b), it consists of five
main subsystems including; PV panel, DC/DC converter,
mobile platform, DC machine and control unit subsystems,
each subsystem, each subsystem is to be mathematically
described and corresponding Simulink sub-model
developed, then an integrated generalized design of overall
SEMRP system of integrated subsystems will be developed,
to result in generalized SEMRP system, the subsystems
models and the whole SEMRP system model, are to be

tested and analyzed for desired system requirements and
performance.

2.1 Modeling of mobile platform

A detailed description, fundamentals, mathematical and
Simulink models of mobile robots can be found in different
resources, most of it study separate specific system or
subsystem design, dynamics analysis or control, including
[1-22]. In [14] Proposes a new refined mathematical,
Simulink and function block models for mobile robots and
some considerations regarding Mechatronics design and
control solutions are proposed and tested. In [15]
Mechatronics design of electric machine and corresponding
motion control in terms of desired output position or
velocity, for desired deadbeat response specifications are
proposed and tested, the proposed design can be used for
different Mechatronics motion control design application
where the proper selection of actuating machine and design
of precise motion control system are of concern, the design
can be simplified, accelerated and evaluated, using both or
either of proposed new MATLAB built-in function named
deadbeat( ). In [16] mathematical and Simulink models of
mobile robot in the form of wheeled chair are proposed and
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controlled to achieve desired output performance and
speed. In [18] dynamic analysis and control of mobile
robots using a proposed generalized model are proposed.
In [19] Design and implementation of an experimental
mobile robotic system is proposed, a model of designed
robot was created in environment of the ADAMS
simulation software and the electrical drive system was
modeled in the Simulink software, the obtained data was
used in the process of determination of appropriate driving
motor, moreover, the real experiments with constructed
robot were accomplished in order to verify the performed
simulations. In [20] proposed models that be used for
simulation and control of mobile platforms, the proposed
models take into account the hardware limitations, friction
force and the topography of the environment for out door
navigation. In [21] Introduced modeling of power
components and computer simulation as a tool for
conducting transient and control studies of mobile robots.
In [22] some considerations regarding mathematical models
and control solutions for two-wheel differential drive
mobile robots, where the closed loop control diagrams for
position control and respectively for direction control in
tracking along imposed trajectories are developed, analyzed
and included.

2.1.1 Actuator subsystem modeling

In order to drive a SEMRP, induction motors,
reluctance and permanent magnet motors can be used, the
actuating machines most used in Mechatronics motion
control applications are PMDC machines (motors).In this
paper, PMDC motor is considered as SEMRP electric
actuator, based on this, the SEMRP system motion control
can be simplified to a PMDC machine motion control.
depending on application requirements, any other
actuating machine can also be used to replace PMDC motor
to develop a generalized model.

Considering that the DC motor subsystem dynamics and
disturbance torques depend on mobile platform shape and
dimensions, in modeling DC motors and in order to obtain
a linear model, the hysteresis and the voltage drop across
the motor brushes is neglected, other DC motors types can
be used, where the input voltage, Vi» maybe applied to the
field or armature terminals [28].

A detailed mathematical description and Simulink models
of DC machine has been studied for last decades, and can
be found in different resources including; [12-17][26-27][29].
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In [16-17] a detailed derivation of DC machine and mobile
robotic platform mathematical and Simulink models are
derived and developed, as well as, function block with its
function block parameters window, based on these
references, the DC motor system dynamics are expressed as
given by Eq.(1), The coulomb friction can be found at steady
state, to be as by Eq.(2).Since the open loop transfer function
of SEMRP system is simplified to DC motor open loop
transfer function, the equivalent SEMRP system open loop
transfer function with load and gears attached, in terms
input voltage, Vin(s), and shaft output angular velocity, w(s),
is given by Eq.(3).The geometry of the mechanical part
determines the moment of inertia, the SEMRP system can
be considered to be of is cylindrical shape [—, with the
inertia calculated as given by Eq.(4) , where the total
equivalent inertia, J«uio and total equivalent damping, beguio at
the armature of the motor with gears attaches, are given by
Eq.(5). The inertias of the gears and wheels have to be
included in the calculations of total equivalent inertia, as by
Eq.(5)

Kt ia=Ta+ To+ Tioaa+ Ty

¢y
Kiia-bfw= T,
t1 b*w f (2)
S
G e 5) = Zrmim ) _
Vin (S)
~ K, /n ©®)
[(La‘]equiv )S2 + (Ra‘]equiv +bequiv La)s + (Rabequiv + Kt Kb)]
2 2
bequiv :bm +bLoad {N_lj & ‘]equiv =‘]m +‘]Load [N_lj
N, N, (4)
bh? AN
‘]Ioad :EQ‘]equiv :‘]motor +‘]gear +(‘]wheel +mr ) N_Z

In the following calculation the disturbance torque, T, is all
torques including coulomb friction, and given by
(T=Tiwi+Ty), and correspondingly, the open-loop transfer
function of the PMDC is given by Eq.(5). Based on Eq. (3),
two Simulink models of DC machine subsystem shown in
Fig. 2(a)(b) are developed , these sub-models will be used in
this paper to represent DC machine sub-model..
— a)platform (S) —
Vi (s) ()
K,/n
$)+(L,s +R,)(T )+K,K,

Gopen (S )

- (LS +R,) (Jequiy S +b,

equiv equiv

IJSER © 2014
http://www.ijser.org


http://www.ijser.org/
http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8, August-2014

ISSN 2229-5518
Current.
Mobile_robotl.mat

I N

Torque

—

kpiobile_robot2.m

558

Angular Speed
Load torque sub-system > |:|
rclination anglle
Inclination angle Kinclination 4 I:l
Load torque
P { Mobile_robot.mat
Angular speed @ I
’_’}K_ linear speed. - > |:|

Torque ra(iZmps I:l
V=Wl
angula
+ 1 Curtent; 1 eed
N g ™ Mobile_robot3.mat
La.stRa den(s)
Step, : Torque o n
V=12 Transfer function torque Tanser iy ]
' Plauist—
ULsHR) congiant 1U(Is+h). q
Kbl# Tinear acceleration
EMF constant Kb

Mobile_robot4.mat

Fig. 2(a) DC machine sub-model in Simulink

Ra Curent_y, [l
5 ' 1
vmnm I—y. » ot 7 current Moormat
- s
MotorTorqu£,—|
1La v
. Y L
A2 N [—
: Y| Motorl.mat
[mobile_W)
Torque anglul. speedy [ ]
Inclination angle » Angul. speed 1 |
i B
Inclination angle Load torque > o ° " 1
Inertia , 1/Jm ntegrator
mobile_W] Angular speed
um L Motor2.mat
Ang. speed bm |~ rad2mps\ k. |
Load torque sub-system V=WH2 linear speed. ]
Damping, b >
[
L—Pp| Motor3.mat
ToFile3
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Fig. 2(a)(b) open loop Simulink model of DC machine subsystem sub-model with load torque

2.1.2 Modeling of SEMRP platform dynamics.

In [14] is introduced a detailed derivation of refined
mobile platform mathematical and Simulink models
including most possible acting forces, tested and verified.
Several forces are acting on mobile platform when it is
running, the modeling of a mobile platform system
dynamics involves the balance among the acting on a
running platform forces, and these acting forces are
categorized into road-load and tractive force. The road-load
force consists of the gravitational force, rolling resistance of
the wheels, the aerodynamic drag force and the
aerodynamics lift force. The resultant force is the sum of all
these acting forces, will produce a counteractive torque to

the driving motor, i.e., the tractive force. The disturbance
torque to mobile platform is the total resultant torque
generated by the acting forces, and given by Eq.(6).The
driving force comes from the powertrain shaft torque,
which can be written as the wheel torque, given by Eq.(7),
This wheel torque provides the resultant driving, tractive
force, Fr to the platform, and referring to Fig. 3, the
relationship between the resultant tractive force and the
torque produced by the motor T: ,can be obtained as shown
in Eq.(8) .The platform inertia torque can be defined by
Eq.(9). It is required to couple the mobile platform with the
wheel rotational velocity via characteristics of the electric
motor and surface such as the traction force, the torque, etc.
The relationship between the linear velocity of the platform,

IJSER © 2014
http://www.ijser.org


http://www.ijser.org/
http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8, August-2014

ISSN 2229-5518
v, and the angular velocity of the electric motor is given by

Eq.(10):
I:Total - F + F + F + I:Lln _a I:ang_a (6)
Twheel = nnTshaft (7)
TW ee nnTs r
I:Total = :_ L= rhaft = Tshaft = I:Total E @®)
d @y
T :J _ ehicl 9
Vehicl dt ( )
r *
L= wheel w (10)
n

To determine the electric battery capacity, and
correspondingly design of the Photovoltaic panel with
series and parallel connected cells, it is required to
estimated energy required by platform, the required power
in kW that platform must develop at stabilized speed can be
determined by multiplying the total force with the velocity
of the SMEV, and given by Eq (11):

Prow = ZF)*v=F,, * (11

Electrical power (in watts) in a DC circuit can be calculated
by multiplying current in Amps and V is voltage, and given
by Eq.(12).Based on fundamental principle of dynamics the
acceleration of the vehicle is given by Eq.(12):

P=1xV 12)
o= Pm B Ptotal (13)
M *v

The driving force comes from the powertrain shaft torque,
which can be written as the wheel torque, given by Eq.(7).
This wheel torque provides the resultant driving, tractive

force, Frow to the vehicle and given by Eq.(14):

T n*p*T
FTotaI — _Wwheel _ 77 shaft (14)
rwheel r-wheel

Referring to Fig. 3, the relationship between the resultant
tractive force and the torque produced by the motor T
,can be obtained as by Eq.(15):

s heel
Tshaft = I:Total * W.,fe (15)
n*n

The platform inertia torque can, also, be defined by
relationship given by Eq.(16):
dw

latf
platform % (16)

T=1J

When modeling mobile platform, considering desired
accuracy and platform system dimensions, the following
most acting forces and corresponding torques, can be
considered:

The rolling resistance force,

F F C, =MgC, cos(a) (17)

rolling =
For motion on a level surface, =0, cos(a)=1, and Eq.(17)
becomes:

normal _ force
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The rolling resistance coefficient C: ,is calculated by
expression given by Eq.(20):
C = 0.01[1+ 36 ] (20)
100
The rolling resistance torque is given by Eq.(21)
Trolling = (M gC COS((Z)) wheel (21)
The hill-climbing resistance force is given by Eq.(22):
I:(:Iimb = Fslope = ( Mg Sin(a)) (22)
The hill-climbing resistance, slope, torque, is given by
Eq.(23):
Tclimb = Tslope - ( Mg Sm(a)) wheel (23)
The total inertia force of the mobile platform, is given by
Eq.(24), The inertia torque is given by Eq.(25):
dv
Fretia = Fgope =M — (24)
inertia slope dt
dv 2
Tinertia :Tslope = (M E (rwheel ) (25)

The Aerodynamic Drag force, given by Eq.(26),Considering
car and wind speed Eq.(26) become:

I:aerod = 0. SpAC vehlcl (26)
aerod - O 5pAC ( vehlcle + med ) Slgn( vehlcle)
aerod O 5pAC ( vehicl +med ) Slgn ( vehicl +med )

The aerodynamics torque is given by Eq.(27).The
aerodynamic drag coefficient Ca : characterizing the shape
of the SMEV and can be calculated using expression, given
by Eq.(28):

1
Taerod = (2 pAC vehlcle )rwheel (27)
F r
0= ae od2 (28)
0.5p0°S

The aerodynamics lift force, Fis; given by Eq.(29).The
coefficient of lift Ci, with values ( C. to be 0.10 or 0.16), can
be calculated using expression given by Eq.(30):

I:Ilft =0. SPC By, vehlcle (29)
= ;z (30)
0.5pv°A
The force of wind , Fuint ; can be calculated by Eq.(31):
I:wind = 0. SpAC ( sehicte T Qing )2 (31)

The angular acceleration force, is the force required by the
wheels to make angular acceleration and is given by
Eq.(32):
2
acc_angle — J cz;_a (32)
wheel
The angular acceleration torque is given by Eq.(33):

G? G?
(33) Tacc_angle = [‘] Q_aJ wheel =J

wheel wheel

The linear acceleration force F.. : is the force required to

F -F -M 18
rolting romal_foee 1 9C, (18) increase the speed of the SMEV and can be described as a
In terms of the vehicle linear speed Eq.(17) becomes: linear motion given by Eq.(34):
I:rolllng M g (CrO Crl U)Sign (U) (19)
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F :M*a:Mi—U:[M +Jwﬂjd—” (34)
t

e r? )dt

T

Fo=M*a=M3I%_ 2T
dt J

Substituting derived equations in total force equation, we

have, expression given by Eq.(35):

Frow =[Mgsin(@)]+ [Mg(C,-C, *v)sign(v) |+

2 . 35)
|: OSIDACd (Uvehicl + Uwind ) Slgn (Uvehicl +Uwind ):| + F

Linear_acc

+ K M + —‘]V;hzeel j(:j_f}

Raad incl._

Fig. 3 Forces acting on moving solar electric mobile robotic
platform.

Considering shape of mobile platform as cylinderical =,
the aerodynamic drag coefficient is found from
aerodynamic force as follows,: the drag force is found by
Fa= tm * A, where : ™ :shear stress and found by
equationfm = u (du/dy) l, o Where: p: air dynamic

viscosity 1.5x10% . A: frontal area of platform
(A=0.58"0.92=0.5336m?). v: The linear speed of the mobile
platform (0.5 m/s), substituting and calculating we find
Aerodynamic drag coefficient Ca=0.80,Cais not an absolute
constant for a given body shape, it varies with the speed of

The air density is calculated by below expression, where: p,
= 101325 Pa, sea level standard atmospheric pressure, To =
288.15 K sea level standard temperature. G = 9.81 m/s2.
Earth-surface gravitational acceleration. L = 0.0065 K/m
temperature lapse rate. R = 8.31447 J/(mol*K) universal gas
constant. M = 0.0289644 kg/mol molar mass of dry air.

g*m
. L*h Rt
M, * 0, (1— T ]
R*T

Load torque modeling and simulation; In [14], based on
application and platform size, a detailed derivations of
different models of mobile robotic platform and
corresponding Simulink models, are developed. Based on
derived equation the maximum calculated load torques, for
the mobile robot to overcome, is simulated in Simulink
refined load-torque sub-model and mask shown in
generalized model shown in Fig.7 , based on desired
accuracy and application other representations can be
developed including shown in Fig. 4(a)(b)(c)(d), where
three versions of load torque are proposed, first model of
acting forces and corresponding torques shown Fig. 4(a)
and second simplified model for mobile platform of medium
size applications shown Fig. 4(b), in this model, the
following forces can be included; the hill-climbing
resistance force Fuint, aerodynamic Drag force , Faerod and the
linear acceleration force Fac, and to be given by Eq.(36). The
load torque can be further simplified to include the total
inertia force of the mobile platform, the total weight
component of the robot, and the total friction force between
the wheels and the topography’s surface with the viscous
rolling friction coefficient the corresponding Simulink sub-
models is shown in Fig. 4(c). The input to load-torque sub-
model is shaft angular speed w, the motor torque K:*l. for
coulomb friction calculations and changes in the road
surface, inclination angle, « as a disturbance introduced to
the system.

p:

airflow (or more generally with Reynolds number Re. vo : F =0.5pAC_0v? + Mg sin(e) + m d_U (36)
The speed of the wind (m/s), against the direction of the D dt
platform's motion, r: wheel radius 0.075 m. p: The air
density (kg/m?) at STP, p =1.25, At 20°C and 101 kPa, o
=1.2041,
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The aerodynamics drag torque

] 0.5 UFATCAVAT

(0.50*rou*front_area*Cd)*r

I

The aerodynamics lift force = 0.5*ru*B*CL*v"2

(0.50*ru*reference_area*r)

The rolling resistance torque

M*g* Cricos(a)*r
Derivative,
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angle — iz
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sn) w
cos(u)
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Fig. 4(a) load torque refined Simulink model
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Fig. 4(b) load torque of medium size and accuracy platform model
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Fig. 4(c) The simplified load torque of platform model

Load torque subgystem o
Load torque subsystem inclination angle
Anguiar spee (speed Inclination angle |@—— Inclination
Load Torque
Load Torque
¢ L0ad torque G| oA toTQUE Kt*la e <
Inclination angle Inclination angular speed
Angular speed - <

inclination anale
Fig. 4(d) Simulink model load torque mask
constant, for calculated angular speed w, is given as shown

2.2 Sensor subsystem modeling by Eq.(38), any other desired platform output speed can be

choosing based on this approach, for example for output

Tachometer is a sensor used to measure the actual linear speed of 0.5m/s , w =0.5/0.075=6.667 and K
output angular speed, wr. Dynamics of tachometer can be =12/6.667=1.8

do(t)
Cdt

represented using Eq.(37), assuming the SEMRP system, is
to move with linear velocity of 0.5 m/s, the angular speed is

obtained as shown by Eq.(38). Therefore, the tachometer
IJSER © 2014
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_Vo 1 1333%radis = K- —2—-09 (8)
r 0075 13.3333

2.3 Generalized Photovoltaic Panel -Converter (PVPC)
subsystem model

The PV panel is used as electricity generator to convert
the irradiance from sunlight into electricity using
photovoltaic system to generate its own power for
propulsion and for storing in batteries, and use power
converter as a device that converts electrical energy source
with variable needs of the electric vehicle by

switching devices .The PV Panel-Converter (PVPC) system
consists of two main subsystems; PV panel and DC/DC
buck converter with battery subsystems.

The PVPC system consists of two main subsystems; PV
panel and DC/DC converter with battery subsystems, each
subsystem will be separately, mathematically modeled and
simulated in MATLAB/Simulink, and then an integrated
generalized and refined model that returns the maximum
output data, for design and analysis, will be developed and
tested. The generalized mathematical and Simulink
Photovoltaic Panel —Converter (PVPC) subsystem model
and sub-models, considered in this paper are d in reference
to [24-25].

2.3.1 Photovoltaic cell-Panel subsystem modeling

A general mathematical description of a PV cell in terms
of output voltage, current, power and of I-V and P-V
characteristics has been studied for over the past four
decades and can be found in different resources, many of
which are listed in [24]. The output net current of PV cell I,
and the V-I characteristic equation of a PV cell are given by
Eq.(39), it is the difference of three currents; the light-
generated photocurrent I, diode current I and the shunt
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current Irst . The output voltage, current and power of PV
array vary as functions of solar irradiation level B,
temperature T, cell voltage V and load current I, where
with increase in temperature at constant irradiation, the
power output reduces, also, by increasing operating
temperature, the current output increases and the voltage
output reduces, similarly with irradiation. Therefore the
effects of these three quantities must be considered in the
design of PV arrays so that any change in temperature and
solar irradiation levels should not adversely affect the PV
array output to the load/utility [24]

b=15 =g = lesn

aW +IRs) (39)
1=ty 1, [e wa _g| VIR
Rsh
qv +IRg)
|:(|5c+Ki (T _Tref ))L_Is e V-1 _V +RSI
1000 @

The generalized mathematical and Simulink models of PV
cell, considered in this paper are built in reference to [25-
26], the modified model and mask are shown in Fig. 5(a)(b),
as shown, this generalized PV cell- array model is designed
to allow designer to have maximum numerical visual and
graphical data to select, design and analyze a given PV
system for desired output performance and characteristics
under given operation condition, including; cell's-panels
current, voltage, powers, efficiency and fill factor. Running
model given in Fig. 5(d), for PV parameters defined in Table
1, at standard operating conditions of irradiation f=1000, and
1=25, will result in P-V and I-V characteristics shown in Fig.
5(c)(d) and shown visual numerical values of cell's-panels
current, voltage, powers, efficiency and fill factor, these
curves show that, this is 3.926 Watt PV cell with Isc=8.13 A
, Vo= 0.6120V, Inax =7.852 A, Vinax =0.5 V, (MPP = Imax * Vmax
=7.852 *0.5=3.926).
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2.3.2 DC/DC Converter subsystem modeling

Power converters can be classified intro three main
types; step-up, step-down and step up and down. Most
used and simple to model and simulate DC/DC converter
include Boost, Buck and buck-boost converters. [24-25]. In this
paper step-down DC/DC Buck converters is used. In [24],
different models of Buck converter are derived, developed
in Simulink and tested, including Buck converter circuit
diagram shown in Fig. 6(a) and Simulink sub-model and
masks shown in Fig. 6 (b)(c), also In [24] generalized
Photovoltaic panel-Converter (PVPC) system Simulink
model, shown in Fig. 6(d), is developed by integration both
PV panel and converters subsystems sub-models resulting
in model shown in Fig. 6(e). These Fig. show the outputs of
both PVPC subsystems when tested for defined parameters
listed in Table-1 including duty cycle of D=0.5. Duty cycle is
the ratio of output voltage to input voltage is given by
Eq.(40):

Ron

T H

Fig. 3(a) Buck converter circuit diagram[24]
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Where: [owr and I, : the output and input currents. D : the
duty ratio (cycle) and defined as the ratio of the ON time of
the switch to the total switching period. In this paper, the
PWM generator is assumed as ideal gain system, the duty
cycle of the PWM output will be multiplied with gain Kv=
Kp, This equation shows that the output voltage of buck
converter is lower than the input voltage; hence, the duty
cycle is always less than 1.

2.3.3 Generalized Photovoltaic Panel-Converter (PVPC)
subsystem model

Based on presented Simulink two sub-models of SEMRP
system, PV panel subsystem and DC/DC converter
subsystem , a generalized system model of PVPC system
can be proposed and in generalize SEMRP system model

shown in Fig. 6 (d)(e)
?
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2.4 Controller subsystem selection , modeling and design

Different control approaches can be proposed to control

the overall SEMRP system output performance in terms of
output speed, as well as, controlling output characteristics
and performance of PVPC subsystem to meet desired
output voltage or current under input working operating
conditions.
PI controller: because of its simplicity and ease of design,
PI controller is widely used in variable speed applications
and current regulation, in this paper PI controller is selected
for achieving desired outputs characteristics of PVPC
subsystem and meeting desired output speed of overall
SEMRP  system, where Different PI controllers
configurations are to be applied to control the PVPC
subsystem and overall SEMRP system to achieve desired
outputs of speed, voltage and load currents for particular
SEMRP system application, it is important to notice that PI
controller can be replace with PID or any other suitable
control algorithm .

The PI controller transfer function in different forms is
given by Eq.(41). The PI controller pole and zero will affect
the response, mainly the PI zero given by; Z.=-Ki/Kr, will
inversely affect the response and should be canceled by
prefilter, while maintaining the proportional gain (Kr), the
prefilter transfer function is given by Eq.(42) , the placement
of prefilter is shown on generalized model.

Kl
Kes +K, ) Tk,
G, (5) =k, + Koo (KeS+K ) _ )o@
s s s
Kp(s+Z, L(Ts+1 - 1
:%:GPI(S):KPI %ﬁ(m [1+.|.I—S]
VA Z
G Prefilter (S ) = g = A (42)

(s+Zo) (s+Zp)

PI controller with deadbeat response design, Deadbeat
response means the response that proceeds rapidly to the
desired level and holds at that level with minimal
overshoot, The characteristics of deadbeat response include;
Zero steady state error, Fast response, (short rise time and
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settling time) and minimal undershoot, +2% error band [14-
15] [28], Controller with deadbeat response design is
described and designed in details in [14]. In [15] a MATLAB
built-in function to calculate desired deadbeat parameters
including Kri, Zrr is designed and proposed.

3. Proposed generalized Solar Electric Mobile Robotic
Platform (SEMRP) system model

Integrating all sub-models of all subsystems; particularly
PV panel subsystem ,DC/DC buck converters subsystem,
mobile platform subsystem, controller subsystem and load
torque subsystem shown in Fig.s 3,456, will result in
generalized SEMRP system model shown in Fig. 7(a),
another generalized model can be proposed and shown in
Fig. 7 (a) ( in next section). The inputs to the first model are
operating conditions of PV panel; irradiation §, working
temperature T, PV panel-array construction including series
Nsand parallel N cells and cell surface area A. The outputs
of this model are numerical visual data, graphical data and
output response curves of PV panel, converter and platform
subsystems including; output linear speed, current, torque,
acceleration, PV panel output current, volt, V-I and P-V
Characteristics, finally, DC/DC converter output current
and voltage. The generalized SEMRP system model is
supported with different control algorithms including
PID,PD,PI, PI with deadbeat response to control the mobile
platform speed and performance, and can be modified to
include any other control algorithm, also, also this model
can be modified to include other control approaches to
control PVPC subsystem outputs to match load
requirements according to control approaches proposed
in[25] including voltage and current control of PVPC

567

subsystem to match platform voltage and current
requirements

4. Testing and analysis

The proposed model works by defining the input

operating condition and cells construction, based on this,
the solar panel will generate corresponding output voltage ,
the DC/DC buck converter will reduce the input from PV
panel voltage to platform voltage (e.g 12 Volts) according to
duty cycle D, the resulted from PVPC subsystem volts are
fed to mobile platform for motion, finally, the selected and
designed controller is used to control the performance of
mobile platform to meet desired response and desired
output speed.
Testing the proposed generalized model for desired output
speed of 0.5 m/s for SEMRP subsystems parameters defined
in Table-1, and under PV panel operating conditions of
irradiation =200, and T=50 and number of series N:=48
and parallel Nw= 30, cell surface area A=0.0025 m?, and by
applying PI controller with deadbeat response design,
using methodology discussed in [14] and MATLAB built-in
function designed in [15], with PI speed controller, will
result in maximum output numerical visual and graphical
output readings that allow designer to have the maximum
data to select, design, integrate, tested and analyze the
overall SEMRP system and each subsystem, these data
output are listed in Table-2 and shown in Fig. 7(a)(b)(c),
including PV panel currents of 41.01 A, and voltage of 24V,
Converter's output voltage of 12.01 V, PV panel V-I and P-
V Characteristics shown in Fig. 7(e)(f) , and Converter
outputs current, voltages responses shown in Fig. 7 (g) ,
finally platform output linear speed of 0.5 m/s and
responses shown in Fig. 7(h), as well as platform torque,
current and acceleration shown in Fig. 7(i)
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Fig. 7(a) Generalized Simulink model of SEMRP system
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Fig. 7(c) Both subsystems of PVPC system models united in One sub-model
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Fig. 7(d) Three sub-models of PVPC subsystem; panel, converter and PWM sub-models
Table 2 Simulation results of each subsystem and whole system

PVPC system PV cell outputs PV Panel outputs Converter outputs SEMRP outputs
inputs
p 200 Voltage 05V Voltage 24V Voltage 1199V Linear Speed
T 50 Current 1438 A Current 43.134A Current 1439 A Angular.
Speed.
D 05 Fill factor 0.1445 Power 17.25 motor
out Torque
A 0.0025 Powerout 0.7188 Current
Ns 48 Power in 0.5
Np 30 Efficiency  0.6956
By =] = ‘Eev a2 =
XY Plot XY Plot
2 T 0.8 T
07
15 06
05
I &% 1 :l_: 04
g " 03
05 02
| 01 |
% 01 0z 103 04 05 06 % 01 02z 03 o0z 05 06
X Ais X Axis
Fig. 7 (e) V-I Characteristics for $=200, and T=50  Fig. 7 (f) P-V Characteristics for =200, and
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Fig. 7 (g) Inputs-outputs data of DC/DC Converter subsystem
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Fig. 7 (h) platform's output linear speed vs. time
response

4.1 Controller selection and design for specific purpose

The proposed generalized model can be modified to
include different control algorithms to control PVPC
subsystem performance and output
including controlling output current to match load-current,
controlling output voltage to match load-voltage ,
controlling both output voltage and current to meet load
requirements. In [25] different control approaches are
applied and tested to control the performance and
characteristics of the PVPC subsystem. In this paper
controlling both PVPC subsystem current and voltage to
meet load-platform desired voltage and current is to be
applied, while achieving desired output speed using PI
controller

characteristics,

42  Controlling both PVPC subsystem current and
voltage to meet SEMRP load-platform system desired

SEMRP system outputs

8
DC machine torque
7 Anguiar Lpeed

. /\/ DC|machine durrent

Magnitude

0 2 4 6 8 10 12 14
Time(s)

Fig. 7 (i) platform's output current, torque, speed,
acceleration vs. time responses

voltage and current, while achieving desired output
speed.

The proposed control approach of the overall SEMRP
system will have the configurations shown in Fig. 8 (a). PI
controller and with prefilter and deadbeat response design,
are used to control the mobile platform output linear speed
to meet 0.5 m/s and 1 m/s, two control approaches are used
to current and voltage control to meet desired platform
load-current and voltage.

Matching load-platform desired current ; as shown in Fig. 8
(c) the comparison between load's and converter's currents
is used to match the both currents, where load-platform
current i is fedback to converter and compared with the
converter output current lwm, the difference is used to
match the desired output platform current, according to the
duty cycle D.

Controlling the converter’s output voltage to meet desired
platform voltage: as shown in Fig. 8 (b), The desired
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converter output voltage and the converter actual output
voltage are compared to calculate the error signal, used by
PI controller to drive the converter switch according to the
calculated duty cycle to meet platform voltage, The duty
cycle D cycle is calculated automatically, as the ratio of
converter's voltage to desired output voltage, and given by
Eq.(43).

\Y

Conv __out _desired
D ===t
V

Testing the proposed model for desired converters output
voltage ,Vout_aesira= 12 V and desired linear speed of 1 m/s, at
irradiation =200 and temperature T=75, for SEMRP system
parameters values defined in table-1, will result in liner
speed of]l m/s and currents, torque and acceleration shown
in Fig. 8 (d)(e), and matching all currents (load-platform
current, converter output current) to have the value of 10.45
A, as well as, matching all volts to be 12 V. Also, running
the model, will result in all data required to analyze the

(43)

Panel _out

572

SEMRP system performance and outputs characteristics,
including converter output volts of 12 V, PV panel output
voltage of 24 V, and duty cycle of D=0.5 ,and I-V, and P-V
characteristics, these values and other are numerically
shown in Fig. 8 (a), the plots of PV panel output voltage,
converter output voltage and converter output current are
shown in Fig. 8 (d), the control signal is shown in Fig. 8 (e).
The proposed model can be modified to include PI current
controller, where converter output current and DC motor
armature current are compared and the different is used by
PI current controller to control and ensure that the required
load-platform current is met, the proposed control
approach is shown in Fig. 8(f), running this model will
result in same outputs shown in Fig. 8(c)(d)(e)(f)
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Fig. 8(a) proposed control approach for Controlling both PVPC subsystem current and voltage to meet SEMRP load-platform
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Fig. 8 (c) a part of DC machine subsystem showing platform and converter currents
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Fig. 8 (f) a part of generalized model showing control approaches of PVPC subsystem, using two separate PI current and
voltage controllers .

4.3 Matching Photovoltaic Panel-Converter (PVPC)
subsystem’' current with platform's-load’'s current while
achieving desired output speed.

The proposed control approach and the overall SEMRP
system will have the configurations shown in Fig. 9(a). PI
controller with prefilter and deadbeat response design, are
used to control the mobile platform output speed, the PV
panel subsystem is given as a function of (V,lima) = AV,G,T),
with input current, irradiation and working temperature ,
in the proposed load-current control approach the platform
armature current is fed to PV panel and used to generate
the output voltage and current of PV panel- converter
subsystem. That will be fed to DC machine to generate
desire torque to overcome load torque.

Testing the proposed model shown in Fig. 7 (a), by
applying PI Controller with deadbeat response design, for
SEMRP system with all subsystems' parameters defined in
tablel including duty cycle of D=0.5, under operating
conditions of PV panel; irradiation =200, and T=50 for
desired output linear speed of 1 m/s, and PVPC subsystem'
output voltage of 12 V. will result in match

desired load-platform current to overcome load-torque and
in all, numerical visual and graphical data required, (shown
in Fig. 9(a)(b)(c)), as well as, output platform's linear speed
of 0.9994 m/s , platform-load's current of 17.17 A, that is
equal to converter output current of 17.17 A , and
converter's output volt of 12 V, for PV panel output voltage
of 24 V, and finally, V-I and P-V Characteristics of PV panel
shown in Fig. 9(e)(f).

IJSER © 2014
http://www.ijser.org


http://www.ijser.org/
http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8, August-2014

ISSN 2229-5518

PV panel | out
Duty cycle, PVPC Subsystem P
— > 7513
D +—P|Duty cycle
PV panel current out > ,_l
T —pI7 -
PV panel V out
B b B
— PV panel Volt out
s |:| Conv_current] )jl 64.56 Inclination
v <l Load torque sub: ndinati ‘
L nclination angle
2 Converter | out O Angular Speed E
A +—P{Cell suface area A B4 15.17 ncination angle >
Converter | out {3 Load torque 4 _13.31
» (I Current. Torque 4
Ns PN I:l I:l Angular speed (@]
— Converter V out P{Mobile_robot7.mat
Nm —{Np P Conv_current]
Mobile_robot3.mat [fobile_robot2.m = o linear peed. - [
Converter V out 1 ﬁl 4
motor_current] }—}Load current v | 15.17 1803 rad2mps > 0.9983
> > V=Wl
angular
motor current speed
L’ [motor_current] T P {Mobile_robot5.mat
2 70 orqug
\o—} —_ ' b — P 1 Current,i G L *)m —
stZo S R den(y > D
La.stRa Torque '
e Prefilter PI Controller | gearrati —
V-12Y Transfer function torque Trandfer function 13 ¢ Inear acceleration.
- Kol U(LstR) constant 1/Qstb). 0025
| EMF constant Kb
K¢ P{Mobile_robot6.mat
Speed feedback, Ktach
Fig. 9(a) proposed current control approach using second generalized model
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Fig. 9(b) SEMRP system output linear speed VS time
applying currents comparison and PI controller with
deadbeat response

4.4 PI Controller for only speed performance control of
SEMRP system in direct-coupling to the PVPC subsystem.

The overall SEMRP system will have the configurations
shown in Fig. 10(a). In the proposed model, PI controller
with deadbeat response is used to control the mobile
platform output speed, no control is applied to control the
PVPC subsystem output characteristics and performance.

Applying PI Controller with deadbeat response design, for
subsystems parameters defined in Tablel-1 , under same
operating conditions of PV panel, will result in numerical
visual and graphical data and response curves shown in

Time (s)

Fig. 9(c) SEMRP system output current, speed, torque
and angular acceleration all VS time applying currents
comparison and PI with deadbeat response

Fig. 10(a)(b), including V-1 and P-V Characteristics of PV
panel shown in Fig. 7(d)(e), the simulation and response
curves show that under the given input operating
condition, the solar panel will generate 24 Volts, the DC/DC
buck converter will reduce the input from PV panel voltage
to almost 12 Volts according to duty cycle of 0.5 , the
resulted from PVPC subsystem 12 volts are fed to mobile
platform to move, and PI controller with prefilter are used
to control the performance of mobile platform to meet
deadbeat response and meet desired 0.5 m/s output, a soft
tuning of deadbeat controller parameters will soften the
response.
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5. CONCLUSIONS

A generalized and refined model for Mechatronics
design of Solar Electric Mobile Robotic Platforms (SEMRP)
systems is proposed and tested, the proposed model
consists of five main subsystems’ sub-models, and is
developed to allow designer to have the maximum output

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Fig. 10(e) SEMRP system output current, speed, torque
and angular acceleration all VS time applying PI with
deadbeat response

either subsystem's outputs under various PV subsystem
operating conditions, to meet particular SEMRP system
requirements and performance. the whole SEMRP system
model and each subsystems model, are tested, analyzed
and evaluated for desired system requirements and
performance in Matlab/Simulink, the obtained results show
the simplicity, accuracy and applicability of the presented

data to design, tested and analyze the overall SEMRP models in Mechatronics design of SEMRP system
system and each subsystem, for desired overall and/or
IJSER © 2014
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applications, as well as, for application in educational

the vehicle.

process. Total The total resistive torque, the torque of
all acting forces.
Table 1 Nomenclature and nominal characteristic of Solar cell parameters
SEMRP subsystems Isc=8.13 A, The short-circuit current, at reference
255A,38 temp 25°C
. IA The output net current of PV cell (the
DC machine parameters PV module current)

V=12V Input voltage to DC machine I A The light-generated photocurrent at

Ki=1.188 Motor torque constant the nominal condition (25°C and 1000

Nm/A W/m?2),

R.=0.156 Motor armature Resistance Eg .=1.1 The band gap energy of the

Q semiconductor

L.=0.82 MH Motor armature Inductance, Vt =KT / q The thermo Voltage of cell. For array

Jn=0.271 Geared-Motor Inertia (V, =N_KT /q)

kg.m? . . I A The reverse saturation current of the

bn=0.271 Viscous damping diode or leakage current of the diode

N.m.s . . .

Ki=1185 Back EMF constant, Rs=0.001 Ohm  The series resistors of the.PV .cell, it
they may be neglected to simplify the

rad/s/V .

n=1 Gear ratio analysis.

) Rsh=1000 Ohm  The shunt resistors of the PV cell
r=0.075m, Wheel radius Vv The voltage across the diode, output
Jequio kg.m? The total equivalent inertia, q=1.6¢-19 C The electron charge
bewiv N.m.s  The total equivalent damping, B.=1000 W/n2  The Sun irradiation
L=04m The distance between wheels centers B =B=200 W/m?  The irradiation on the device surface
Ku=12/6.66  Tachometer constant, Ki=0.0017 A/°C  The cell's short circuit current
7=1.8 rad/s temperature coefficient
w=speed/r, =0.5/0.075=6.667 ,also 1/0.075=13.3333 Vo=30.6/50 V  Open circuit voltage
radls Ns=48 , 36 Series connections of cells in the
Tehat The torque produced by motor given photovoltaic module
n The transmission efficiency Nm=1, 30 Parallel connections of cells in the
Tstapt The torque, produced by the driving given photovoltaic module

motor K=1.38¢-23 The Boltzmann's constant
J/oK;
Nominal values for Mobile platform N=1.2 The diode ideality factor, takes the
M,m, Kg The mass of the mobile platform value between 1 and 2
Ca=0.80 Aerodynamic drag coefficient T= 50 Kelvin Working temperature of the p-n
Cr The coefficient of lift, with values( C: to junction
be 0.10 or 0.16), Tr=273 Kelvin ~ The nominal reference temperature
Cr=0.5 The rolling resistance coefficient
o, kg/m? The air density at STP, p =1.25 Buck converter parameters
a, mjfs? Platform linear Acceleration C=300e-6; 40e-  Capacitance
. . 6 F

G, m/s? The gravity acceleration [=2256-6 : 6de- Tnductance
N, mls The vehicle linear speed. 6 H '
a, Rad Road slope or the hill climbing angle RI=RL=7¢-3 Inductor series DC resistance
B Mobile platform's reference area re= RC=100e-3  Capacitor equivalent series resistance,
L lift, ESR of C ,
As Platforms frontal area Vin=24V Inp‘,lt voltage

R=8.33; 5 Resistance
Kr Proportional gain Ohm:
Ki Integral gain Ron=1e-3; Transistor ON resistance
Zo PI controller zero KD=D=0.5 Duty cycle
Pm The power available in the wheels of 0.2,
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Tt=0.1, 0.005
1%3
Ic

Low pass Prefilter time constant
Voltage across inductor
Current across Capacitor
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