
International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Shortest Path Routing Algorithm for Ficonn in
Load Balanced Data Center Networks

K Udaya Bhanu, K Chandra Shekar

Abstract--This paper explores a Ficonn interconnection structure for load balanced data center servers using bi-ports. The tree-based structures are

increasingly difficult to meet the design goals of data centers because of a single-point failure spot for its sub tree branch. And using excessive switches
does not fundamentally solve the problem, but results even higher cost. So we are going for a new structure to interconnect a large number of servers
which contain dual Ethernet ports, in which one is used for network connections and another for the backup purposes. If we make that both the ports are
used for network connections then we can build an effective inter connection structure for the data center networks. We call such a network structure
called as Ficonn. In addition, in this paper, we are using A* algorithm to find the shortest path and boost up the routing of packets transmitted between
the commodity servers. And we have also proposed the deployment of Ficonn.

Keywords: Ethernet ports, Data center, Networks, Routing

——————————  ——————————

1. INTRODUCTION

The main aim of data center networking is to inter
connect a large no. of servers with high performance,
Ascendability, agility, Flexibility to support various
services, Security. The present network architectures
consists of switching elements arranged in a tree structure
can’t meet the design goals of a data center network.

Data center network must be able to provide high
network capacity to better support bandwidth-hungry
services. The network infrastructure must be ascendable to
a large number of servers and allow for incremental
expansion. Data center network must be fault tolerant
against various types of server failures, link outages, or
server-rack failures. Two observations motivate these goals.
First, data center is growing large and the number of
servers is increasing at an exponential rate. The current
Data center network practice is to connect all the servers
using a tree hierarchy of switches, core-switches or core-
routers. With this solution it is increasingly difficult to meet
the above three design goals. It is thus desirable to have a
new network structure that can fundamentally address
these issues in both its physical network infrastructure and
its protocol design. To meet these goals we propose a novel
network structure called Ficonn.

2. INTERCONNECTION STRUCTURE OF FICONN

Ficonn is a level-based iterative structure. A high-level
Ficonn is constructed by using low-level Ficonns. When
building a higher-level Ficonn, the lower-level Ficonns use
half of their available backup ports for interconnections and
form a mesh. Ficonn just needs to use the existing backup
port on each server for interconnection, and no other
hardware cost is introduced on a server. The wiring cost in
Ficonn is less than any other structure because each server

uses only two ports. Routing in Ficonn makes a balanced
use of links at different levels; finally, with the A*
algorithm, routing in Ficonn is further designed to exploit
the link capacities according to current traffic state.

FiConn is a recursively defined structure. A high level
FiConn is constructed by many low-level FiConns. Let us
assume that level-k FiConn as FiConnk. FiConn0 is the
basic construction unit, which is composed of servers and
n-port switch connecting the servers. Typically n must be
an even number such as 16, 32, or 48. Every server in
FiConn has one port connected to the switch in FiConn0,
and this is called level-0 port. The link connecting a level-0
port to the switch is called level-0 link. Level-0 port can be
regarded as the original operation port on servers in
current practice. If the backup port of a server is not
connected to another server, this port is called available
backup port. For instance, there are initially n servers each
with an available backup port in a FiConn0. Now focus on
how to construct FiConnk (k>0) upon FiConnk-1’s by
interconnecting the server backup ports. If there are totally
b servers with available backup ports in a FiConn, the
number of FiConnk-1’s in a FiConnk, is equal to b/2+1.

In each FiConn(k-1), b/2 servers out of the servers with
available backup ports are selected to connect the other b/2
FiConnk-1s using their backup ports, each for one
FiConn(k-1) The b/2 selected servers are called level-k
servers, the backup ports of the level-k servers are called
level-k ports, and the links connecting two levelk ports are
called levelk links. If take FiConn as a virtual server,
FiConn is in fact a mesh over FiConn s connected by level-k
links. A sequential number is to identify a server in FiConn.
Assume the total number of servers in a FiConnk is Nk, and
there is (0<=uk<nk) Equivalently can be identified by
a(k+1) –tupel0,[ak,…,a1,a0] , where a0 identifies in its

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

FiConn0 , and a1(1<=l<=k) identifies the FiConn(l-1)
comprising in its FiConnl. Fig.4 to illustrate the FiConn
interconnection rule, in which n=4and k=2. FiConn0 is
composed of four servers and a 4-port switch.

Fig.1.Construction of Ficonn1 with n=4, includes 3 Ficonn0

The number of FiConn0s to construct FiConn1 is
4/2+1=3. The servers [0,0], [0,2], [1,0],[1,2], [2,0], and [2,2]
are selected as level-1 servers, and connection [0,0] with
[1,0], [0,2] with [2,0], and [1,2] with [2,2]. In each FiConn,
there are six servers with available backup ports, so the
number of FiConn1’s in a FiConn2 is 6/2+1=4 connection
the selected level-2 servers. A level-1 FiConn includes three
level-0 FiConn’s, each consisting of four servers.

3. ROUTING IN FICONN:

In this paper, we are using A* search algorithm in order
to find the shortest path between any pair of nodes so that
we can balance the traffic in the network. A* algorithm is a
variant of Djkstra’s algorithm.

the classic representation of the A* algorithm.

f'(n) = g(n) + h'(n)

g(n) is the total distance the source to the current
intermediate node.

h'(n) is the estimated distance from the current
intermediate node to the destination node. A heuristic
function is used to create this estimate on how far away it
will take to reach the destination node.

f'(n) is the sum of g(n) and h'(n). This is the current
estimated shortest path. f(n) is the true shortest path which
is not discovered until the A* algorithm is finished.

One of the more difficult parts in solving A* is
creating a good heuristic function to determine h'(n). A
heuristic function differs from an algorithm in that a
heuristic is more of an estimate and is not necessarily

provably correct. An algorithm is a set of steps which can
be proven to halt on a particular given set of input.

The heuristic function in A* is arbitrary, however
the better your heuristic is, the faster and more accurate
your solution will become. However, therein lies the
problem -- deciding a good heuristic. Even with a shortest
path example, the heuristic can change, depending on the
implementation of the search, and how easy or complicated
the heuristic function is going to be.

/* src: source node

dst:destination node

g[s]:shortest path

f[s]:path from the source to the next

c[]:nodes to be visited

v[]:visited nodes

nxt: neighbor next node

prv: previously visited node

h:heuristic_cost_estimate

crnt: current node

dis: distance */

A*algorithm(src,dst)

{

 c=0

 V[]= {src}

 prv=0

 g[src]=0

 f[src]= g[src] + h(src, dst)

 while(v!=NULL)

 crnt= v[]

 if crnt = dst

 return reconstruct_path(prv, d)

 v[]=v[crnt+1]

 c[]=c[]+ crnt

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 while(nxt!=NULL)

 if (c!=nxt)

 continue

 g:= g[crnt] + dis(current,nxt)

 if (!nxt || g< g[nxt])

 {

 o=o+nxt

 prv[nxt] := crnt

 g[nxt] := g

 f[nxt] := g[nxt] + h(nxt, dst)

 return 1

 function reconstruct_path(prv, crnt)

 if (prv[crnt]==0)

 p := reconstruct_path(prv, prv[crnt])

 return (p + crnt)

 else

 return crnt

}

While A* is generally considered to be the best
pathfinding algorithm (see rant above), there is at least one
other algorithm that has its uses - Dijkstra's algorithm.
Dijkstra's is essentially the same as A*, except there is no
heuristic (H is always 0). Because it has no heuristic, it
searches by expanding out equally in every direction. As
you might imagine, because of this Dijkstra's usually ends
up exploring a much larger area before the target is found.
This generally makes it slower than A*.

4. DEPLOYMENT OF FICONN:

In practice, it is much likely that the total number of
servers need in FiConn does not exactly meet the number of
servers in a certain FiConnk. Instead, the number is
between FiConnk and FiConnk+1.such a structure called an
incomplete FiConn. For incremental deployment, the need
is to address the interconnection in incomplete FiConns.
Our principle is that the interconnection should not only
retain high bisection width in incomplete FiConn, but also
incur low rewiring cost.

In the construction of complete FiConn, A bottom-up
approach is used. In this way, first deploy a complete
FiConn1, then a complete FiConn2, and so forth. One
problem of this approach is that it may generate incomplete
FiConn with low bisection width. For example, if there are
only two FiConnk-1’s in an incomplete FiConn, the two
FiConnk-1’s will be connected by a single level-k link. The
bisection width of this structure becomes 1, and the single
level-k link is the communication bottleneck in the
structure.

FiConn is built in a bottom-up way, but add level-k
shortcut links to increase the bisection width in an
incomplete FiConnk. Assume there are m deployed
FiConnk-1’s in an incomplete FiConnk, and the number of
FiConnk-1’s in a complete FiConnk is m’. Thus, the number
of undeployed FiConnk-1’s in the complete FiConnk is m’-
m. For a certain undeployed FiConnk, each of the m
deployed FiConnk-1 has a level-k server connecting toward
it in the complete FiConnk.

As there are ‘m’ deployed FiConnk-1 ’s in an
incomplete FiConnk, and the number of FiConnk-1 ’s in a
complete FiConnk is m. Now, we add a new FiConnk-1 into
the incomplete FiConnk. The wiring is as follows. First, for
each of the level-k shortcut links that connect the level-k
servers that should connect it to the newly added FiConnk-
1, we unplug one end and connect it to the new FiConnk-1 .
Second, m/2 level-k links are added to connect the new
FiConn and each remaining deployed FiConn . Third, if is
an odd number, m’-m-1level-k shortcut links are added,
each connecting the new FiConnk-1 and a corresponding
deployed FiConnk-1, based on the shortcut link addition
rule.

We find that the shortcut links we add in an incomplete
FiConn not only increase the bisection width of the
incomplete FiConn, but are also fully utilized during the
process of incremental deployment and easy to rewire.

5. CONCLUSION

 In this paper, we proposed Ficonn inter connection
structure for the load-balanced data center networks that
uses two ports of a data center server. We proposed
solutions to increase the bisection width in FiConns. We
also proposed the design of FiConn, an inter connection
structure for data centers that uses dual ports and
eliminates the requirement of high-cost switches other than
the lowest-level commodity ones. It is highly ascendable
because it can support any no. of servers and also cost
effective since it does not use more no. of switches and
wiring is also simple in the proposed structure, that makes
the datacenter network simple. A* algorithm in routing
makes use of different levels of links that are
interconnected. The shortest path is computed hop-by-hop

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

by each intermediate server based on the available
bandwidths of its two outgoing links. Our future work
involves evaluating the performance of A* algorithm used
in Ficonn.

6. REFERENCES

[1] M.Al-Fares, A.Loukissas, and A. Vahdat, “A ascendable,
commodity data center network architecture,” in Proc.
ACM SIGCOMM, Aug. 2008, pp. 63–74.

[2] H.Sullivan and T. R.Bashkow, “A large scale,
homogeneous, fully distributed parallel machine, I,” in
Proc. ISCA, Mar. 1977, pp. 105–117.

[3] J.Snyder, “Microsoft: Datacenter growth defies Moore’s
Law,” 2007 [Online]. Available:
http://www.pcworld.com/article/id,130921/article. Html

[4] L.Bhuyan and D.Agrawal, “A general class of processor
interconnection strategies,” in Proc. ISCA, Apr. 1982, pp.
90–98.

[5] C.Guo, H.Wu, K.Tan, L. Shi, Y. Zhang, and S. Lu,
“DCell: A ascendable and faulttolerant network structure
for data centers,” in Proc. ACM SIGCOMM, Aug. 2008, pp.
75– 86.

 [6] “Dell powerage servers” [Online]. Available:
http://www.dell.com/content/products/category.aspx/se
rvers

[7] J.Dean and S.Ghemawat, “Map Reduce: Simplified data
processing on large clusters,” in Proc. OSDI, 2004, pp.

[8] M.Isard, M.Budiu, and Y. Yu et al., “Dryad: Distributed
data-parallel programs from sequential building blocks,” in
Proc. ACM EuroSys, 2007, pp. 59–72.

[9] T. Hoff, “Google architecture,” Jul. 2007 [Online].
Available: http://highascendability.com/google-
architecture

[10] C.Guo, G.Lu, D.Li, H.Wu, X.Zhang, Y. Shi, C.Tian, Y.
Zhang, and S. Lu, “BCube: A high performance, server-
centric network architecture for modular data centers,” in
Proc. ACM SIGCOMM, Aug. 2009, pp. 63–74.

[11] J. Kim, W. Dally, S. Scott, and D. Abts, “Technology-
driven, highly ascendable dragonfly topology,” in Proc.
ISCA, Jun. 2008, pp. 77–88.

[12] L. Bhuyan and D. Agrawal, “Generalized hypercube
and hyperbus structures for a computer network,” IEEE
Trans. Comput., vol. C-33, no. 4, pp. 323–333, Apr. 1984.

[13] M. Isard, M. Budiu, and Y. Yu et al., “Dryad:
Distributed data-parallel programs from sequential
building blocks,” in Proc. ACM EuroSys, 2007, pp. 59–72.

[14] A. Carter, “Do it green: Media interview with Michael
Manos,” Dec. 2007 [Online]. Available:
http://edge.technet.com/Media/Doing-ITGreen

[15] L. Rabbe, “Powering the Yahoo! network,” Nov. 2006
[Online]. Available:
http://yodel.yahoo.com/2006/11/27/powering-the-
yahoo-network

[16] F. Leighton, Introduction to Parallel Algorithms and
Architectures: Arrays. Trees. Hypercubes. San Mateo, CA:
Morgan Kaufmann, 1992.

SHORT BIO DATA FOR THE AUTHOR

Mr. K. Udaya Bhanu received his B.Tech in
Computer science and Engineering from Indur Institute
Of Technology And Sciences, JNTU, Hyderabad and
Pursuing M.Tech in Computer science and Engineering
from Aurora’s Technological And Research Institute,
JNTU, Hyderabad.

Email: udayabhanukonne@gmail.com

Mr. K. Chandra Shekhar, working as an

Associate Professor in the Department of Computer Science

and Engineering. Aurora’s Technological and Research

Institute College with a teaching experience of 8years. He

has received his M.Tech in Computer science. His areas of

interest include Computer Networks, Data mining, and

Information Security.

Email: chandhra2k7@gmail.com

http://www.dell.com/content/products/category.aspx/servers
http://www.dell.com/content/products/category.aspx/servers
http://highscalability.com/google-architecture
http://highscalability.com/google-architecture
http://edge.technet.com/Media/Doing-ITGreen
http://yodel.yahoo.com/2006/11/27/powering-the-yahoo-network
http://yodel.yahoo.com/2006/11/27/powering-the-yahoo-network

