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Abstract—New two approaches are proposed for pulse compression the first one is using N.N. with seven training functions (cgf, bfg, br, oss, lm, rp, 
scg); the second one is using NNPSO and that by training N.N. using Particle PSO. In this paper, networks have been implemented for three lengths of 
Px code (4, 5 and 7). For training these networks, the seven functions above and PSO are used. Simulation results show that NNPSO approach has 
significant improvement, while for N.N. approach, three training functions (oss, cgf and bfg) show a good improvement in: error convergence speed (very 
low training error about 10-25), good noise rejection performance and good range resolution ability compared with other neural network approaches. The 
results of PSL and ISL were around (-30, -300) dB for Px code with lengths (4, 5 and 7). 

Index Terms— N.N (Neural Network), PSO (Particle Swarm Optimization), BP (Back-Propagation), M.F (Matched Filter).   

——————————      —————————— 

1 INTRODUCTION                                                                     
The advantage of using narrow pulses in radar is improving 

range resolution. Due to maximum peak power limitations of 
the transmitter, pulse width is increased to improve detection 
capability. Pulse Compression techniques utilize signal pro-
cessing to provide the advantages of extremely narrow pulse 
width [1]. Px code was introduced by Rapajic and Kennedy; it is 
a modified version of Frank code but having lowered integrated 
side-lobe .In this paper two different approaches are presented 
for code optimization. The first one is to use N.N. with seven 
different training functions, the iterations was between (2-45) 
epochs, which consider a fast training. The second approach is 
to use NNPSO, which present a better PSL and ISL. While in [1-
8], where N.N is used or PSO alone, the optimization was 
around (5-30) dB. The two approaches implemented by using 
two multilayered Neural Networks one for real part and the 
other one is for imaginary part. In both these approaches, three 
lengths of Px code were used as the signal codes. 

 

2- THEORETICAL DESCRIPTION  
Detailed submission guidelines can be found on the author 

Pulse Compression correlates the received signal to a delayed 
copy of that which was transmitted [9]. This correlation is a 
cross correlation because the echo is different from the trans-
mitted waveform [10]. Phase Coded waveforms are well 
adapted to digital pulse compression which might be binary 
phase , with two possible phases being 0 and 180, or Poly-
phase codes , their elements can be any number between 0 and  
 
 

 
 

180[11]. Pulse compression waveform design is predicted on 
simultaneously achieving wide pulse width for detection and 
wide bandwidth for range resolution. The waveform’s ACF 
determine its ability to resolve in range narrow autocorrela-
tions, corresponding to wide bandwidths, are necessary for 
good range resolution [12]. To obtain Px code sequences, equa-
tion 1 must be used. 
 

 
 
where: 1 ≤ i ≤ P, 1 ≤ j ≤ P and P is the code length. Three 
lengths of Px code are used which is (4, 5 and 7). In this paper, 
we have carried out these sequences. For relative comparison, 
the amplitude of the ACF of 5 bit Px code is shown in Figure 1. 
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3- OPTIMIZATION PROCESS 

In any Neural Network application, training of the network 
plays an important role [13]. In the pulse compression applica-
tion under investigation, once the network is trained, it can 
distinguish between the transmitted signal and the other re-
ceived signals, which could be external disturbances or time 
shifted versions of the transmitted signal. The transmitted sig-
nals used are three lengths of Px code. The network consists of 
three layers. The first layer is containing one input node. The 
second layer is the hidden layer, contain nonlinear units that 
are connected directly to the input node, the number of node 
in the hidden layer is 3 nodes due to equation 2 [14]. 
 

     Nh ≥ (2*Ni ) +1                    (2) 
 

Where Nh is the number of nodes in the hidden layer and Ni 
is the number of nodes in the input layer. The activation func-
tions of the individual hidden units in the N.N are tan-
sigmoid. The last layer is the output layer, which consists of 
one node. For updating the weights of N.N, several training 
methods were used, which are (cgf, bfg, br, oss, lm, rp, scg), 
also Particle Swarm Optimization (PSO) used to train N.N, 
where every particle represents all weights and biases for one 
N.N. 
PSO is a population based stochastic optimization technique 
inspired by social behavior of fish schooling or bird flocking. 
PSO share many similarities with evolutionary computation 
techniques like Genetic Algorithms [15]. 
All particles are initialized with random N.N weights and bi-
ases. The particles evaluate their position relative to the itera-
tion goal. In each iteration, every particle update its trajectory 
(by its velocity) toward its own previous best position (local 
best), and toward previous best position obtained by any 
member of its topological neighborhood (global best) [16]. If 
any particle’s position is close enough to the goal function it is 
considered as having found the global best and the recurrence 
is ended. 
The particles adjust it velocity and positions due to equations 
(3 and 4) respectively [15]. 
 

 
 
Where ɸ represents the inertia weight c1 and c2 represent pos-
itive constants, r1 and r2 represent two random numbers be-
tween 0 and 1, Xi represents the position of ith particle; Pbest 
is the local best, the Gbest is the global best Vi is the rate of 
position change (velocity) for particle i. Every iteration the 
weights and biases that produced from PSO are tested by cal-
culate the error ,which represent the difference between the 
desired output and the current output, then measured the 
Gbest and Pbest to start the next iteration and its continues 
until the minimum error among all particles is reached. For 
the seven N.N training methods, the same procedure is used 

but without the particles part. 
 

4- SIMULATION RESULTS AND PERFORMANCE EVALUA-
TION 

Once the training is over, the N.N can be exposed to various 
sets of input sequences. This section illustrates the perfor-
mance of the NNPSO which is then compared with the sev-
en training functions and the output of M.F. 
 

4.1 Convergence performance 
The convergence speeds of the BP training methods and 
NNPSO are alternate between (2-80) epoch, (cgf, bfg and 
oss) show the best convergence speed. 
 

4.2 Peak Side-lobe Level (PSL) and Integrated   Side-
lobe Level (ISL) reduction 
Peak Side-lobe Level defined as a measure of the largest side-
lobe power as compared with the main lobe power. Integrated 
Side-lobe Level defined as a measure of the energy distributed 
in the side-lobes as compared with the main lobe power. The 
results of the investigation are depicted in table 1.  
 

 
 
4.3 Noise performance 

 It is important to test the algorithm by adding noise to the 
pulse because the echo signal from the target, in real life, is 
corrupted by noise. In this study WGAN is added with two 
values (SNR=7 dB and SNR=5 dB). The performance of the 
original ACF, the seven N.N training method and NNPSO 
for the noisy case is shown in tables (2 , 3). 

     From these tables, it is clear that the performance of NNPSO 
is much better than any other method. The normalized am-
plitude of the ACF of Px code length (5) for the output of the 
M.F and the output of N.N with noise case (SNR=5 dB) are 
shown in Figure (2). 
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4.4 Ambiguity function 
The ambiguity function (AF) perform filter matched time re-
sponse to a given limited energy signal when the signal is re-
ceived with a Doppler shift ν and a delay τ related to the nom-
inal values (zeros) expected by the filter [17].  
 
|x (τ, ν)| =  �∫ u(t)u̽(t + τ) exp(j2πνt) dt ∞

−∞ �     (5) 
 

     where u is the signal complex envelope. The ambiguity func-
tion represents the main tool for studying and analyzing radar 
signals. The performance in the range resolution is much bet-
ter than in the Doppler resolution. In this paper the ambiguity 
function had been studied for the three Px lengths and the 
seven N.N training function. Figure (3) gives an example for 
the normalized autocorrelation function of Px code, length 5, 
when using (br) to train the N.N. 
 

 
 

3- CONCLUSIONS  
From the tables and figures above, it is clear that when used 
(cgf, bfg and oss)  as Neural training method gave a best re-
duction than the other Neural training method in this work, 
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 they made PSL suppression, while the other methods gave a 
good PSL reduction. For the ISL, the seven methods, in some 
cases, gave smooth ISL while in other cases gave ISL with little 
ripple. While in case of PSO, it gave a PSL suppression even 
within noise case, and it made a little ripple with high noise 
case (SNR=5dB). Concerning the serial processing in one node 
for samples with respect to parallel processing of several 
nodes with on sample, the first approach gives more accurate 
results in ISL and PSL reduction. 
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