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Abstract-A theoretical analysis of mixed convective unsteady f low of a visco-elastic incompressible f luid past an accelerated infinite vertical porous 

plate subjected to a uniform suction has been investigated under the influence of a uniform transverse magnetic f ield. Approximate solutions for f luid 
velocity, temperature, concentration f ield and skin friction have been obtained by using perturbation technique. The effects of the various parameters 
involved in the solution have been studied. The profiles of f luid velocity and the skin friction are presented graphically to observe effects of the visco-
elastic parameter. 
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1. INTRODUCTION 
 

The subject of free convective and heat transfer flows through a 
porous medium under the influence of a magnetic field has 
attracted the attention of a number of researchers because of 
their possible applications in transportation cooling of re-entry 
vehicles and rocket boosters, cross-hatching on ablative 
surfaces and film vaporization in combustion chambers. In 
mass transfer process, heat transfer considerations arise due to 
chemical reaction and often due to the very nature of the 
process. Magnetohydrodynamics is currently undergoing a 
period of great enlargement and differentiation of subject 
matter. The interests in these new problems generates from 
their importance in liquid metals, electrolytes and ionized 
gases, fossil fuel, combustion, energy process, solar energy and 
space vehicle re-entry, control of pollutant spread in ground 
water, to name just a few applications.  
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The viscous force imparted by a flowing fluid in a dense swarm 
of particles has been investigated by Brinkman [1]. Hasimoto 
[2] had studied the boundary layer growth on a flat plate with 
suction or injection. Berman [3] has discussed the two-
dimensional steady-state flow in a channel having a rectangular 
cross section and two equally porous walls. Sellars [4] has 
extended the work of Berman for high section Reynolds 
number. The flow between two vertical plates under the 
assumption that the wall temperature varies linearly in the 
direction of flow in presence of a transverse magnetic field has 
been investigated by Mori [5]. The problem of fluid motion in 
renal tubules which is complicated by the existence of radial 
velocities generated by re-absorption process has been 
investigated by Macey [6].  England and Emery [7] have 
studied the effects of thermal radiation upon laminar free 
convection boundary layer of a vertical plate for absorbing and 
non-absorbing gases. Soundalgekar and Thakar [8] have 
examined the radiation effects on free convection flow of an 
optically thin gray gas past a semi-infinite vertical plate. Das 
et.al [9] have discussed the radiation effects on flow past an 
impulsively started vertical infinite plate. The steady flow of a 
non-Newtonian fluid past a porous plate with suction has been 
examined by Mansutti et.al [10]. Sattar [11] has investigated the 
free convection and mass transfer flow past an infinite vertical 
porous plate with time dependent temperature and 
concentration. Choudhury and Das [12] have investigated the 
MHD boundary layer flow of a non-Newtonian fluid past a flat 
plate. The mass transfer effects on unsteady flow past an 
accelerated vertical porous plate have been discussed by Das 
et.al [13]. Reddy et.al [14] have investigated the unsteady mixed 
convective flow with mass transfer past an accelerated infinite 
vertical porous flat plate with suction in presence of transverse 
magnetic field. 
 
The objective of this study is to extend the work of Reddy et.al 
with visco-elastic flow characterized by second-order fluid 
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whose constitutive equation is given by [Coleman and Noll 

(1960)] 
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where   is the stress tensor, p is the isotropic mean pressure,   , 
  ,    are material constants describing viscosity, elasticity and 
cross-viscosity respectively and    are kinematic Rivlen-Ericson 
tensors defined as  
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Here    and   are respectively the components of velocity and 

acceleration in    direction. Also      from thermodynamic 
consideration [Coleman and Markivitz (1964)]. 

2. MATHEMATICAL FORMULATION 
 

Let us consider the unsteady mixed convective mass transfer 
flow of a second order fluid past an accelerating vertical infinite 
porous plate in the presence of a transverse magnetic field B0. 
The x-axis is taken along the plate in the vertically upward 
direction and y-axis is taken normal to the plate. Here u and v 
are the components of the velocity in the x and y directions 
respectively. It is also assumed that the plate is accelerating 
with a velocity u=U0 in its own plane for t≥0. The equations 
governing the flow under Boussinesq’s approximation are 
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where 1 and 2 are the kinematic viscosities, κ is the thermal 
diffusivity, D is the molecular diffusivity, β is the co-efficient of 

volumetric expansion for heat transfer, 


is the co-efficient of 
volumetric expansion for mass transfer, ρ is the fluid density, 

 is the electrical conductivity, T is the temperature of the 
fluid, C is the concentration and g is the acceleration due to 
gravity. 
 
 The necessary boundary conditions are  
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where Tω and Cω are the temperature and the concentration of 

the fluid at the plate respectively; T  and C are respectively 
the temperature and the concentration of the fluid far away 
from the plate. 
 
  We introduce the following non-dimensional 
quantities  
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Using (2.6), the equations (2.2)-(2.4) reduce to the forms 
(dropping the  
stars ‘*’): 
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 is the visco-elastic parameter.  

The corresponding boundary conditions are 
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3. METHOD OF SOLUTION 

 
To solve the equations (2.7)-(2.9), we assume 

             

ti

ti

ti

eyty

eyty

eyutyu











)(),(

,)(),(

,)(),(

0

0

0







                 (3.1) 

Using (3.1), the equations (2.7)-(2.9) reduce to                              
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with modified boundary conditions 
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On solving equations (3.2)-(3.5) using (3.1) and (3.5), 

we get 
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The skin friction on the plate is given by  
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The coefficient of the rate of heat transfer and the coefficient of 
the rate of mass transfer at the plate, which in the non-
dimensional form in terms of Nusselt number Nu and 
Sherwood number Sh respectively are given by 
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4. RESULTS AND DISCUSSION 
 

In order to study the effects of the visco-elastic parameter α on 
the mixed convective unsteady flow with mass transfer, we 
have carried out numerical calculations for the dimensionless 
velocity component u and the skin friction τ at the plate for 
various values of the flow parameters involved in the solution. 
The corresponding results for Newtonian fluid can be deduced 
from the above results by setting α=0 and these results show 
conformity with earlier results.  
 
In order to understand the physics of the problem, analytical 
results are discussed with the help of graphical illustrations. 
Figures 1 to 4 depict the variations of the velocity profile u 
versus y for various values of Prandtl number  
(Pr), Schmidt number (Sc), Grashof number for heat transfer 
(Gr), Grashof number for mass transfer (Gm), magnetic 
parameter (M), visco-elastic parameter (α) keeping the 
frequency of oscillation ω=0.1 and the time t=0. The figures 
reveal that the velocity diminishes in both Newtonian and non-
Newtonian cases. It is also noticed that the nature of velocity 
distribution is unaltered when the magnetic intensity M 
increases (Figures 1 and 2), Grashof number for heat transfer Gr 
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increases (Figures 1 and 3), Prandtl number Pr decreases 
(Figures 1 and 4) with increasing values of visco-elastic 

parameter 


(α=0, -0.25, -0.4) and fixed values of other flow 
parameters. Variations of the skin friction τ versus the magnetic 
parameter M, the frequency of oscillation ω, Grashof number 
for heat transfer Gr and Grashof number for mass transfer Gm 
are illustrated in the figures 5 to 8 respectively. The figures 
reveal that the skin friction τ enhances due to increase of M, Gr 
and Gm (Figures 5, 7 and 8) respectively whereas increase of ω 
depresses the skin friction (Fig. 6). But in all the cases, the rising 
trend in τ is observed with the increase in the absolute value of 
α in combination with other flow parameters. It can be 
remarked from expressions (3.10) that the temperature and the 
concentration fields are not affected by the visco-elastic 
parameters.  
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Fig. 1   Variation of velocity u versus y for 

M=2, Gr=2, Gm=2, Pr=5, Sc=0.22, =0.1, t=0 
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Fig. 2   Variation of velocity u versus y for 

M=4, Gr=2, Gm=2, Pr=5, Sc=0.22, =0.1, t=0 
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Fig. 3   Variation of velocity u versus y for 

Gr=4, Pr=5, Gm=2, Sc=0.22, M=2, =0.1, t=0 
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Fig. 4    Variation of velocity u versus y for 

Pr=3, Gr=2, Gm=2, Sc=0.22, M=2, =0.1, t=0 
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Fig. 5   Variation of skin friction versus M for 

Gr=2, Gm=2, Pr=5, Sc=0.22, =0.1, t=0 
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Fig. 6   Variation of skin friction versus  for 
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Fig. 7     Variation of skin friction versus Gr for 

Pr=5, Gm=2, Sc=0.22, M=2, =0.1, t=0
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Fig. 8     Variation of skin friction versus Gm for 

Pr=5, Gr=2, Sc=0.22, M=2, =0.1, t=0 
 

 

 
 
 
 

 
 

CONCLUSIONS 
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The problem of mixed convective MHD visco-elastic flow 
and mass transfer past an accelerated infinite vertical porous 
plate is studied analytically. The results of investigation may be 
summarized in the following conclusions: 

 The velocity distribution is retarded in both in 
both Newtonian and non-Newtonian cases. 

 The skin friction τ rises due to increase of magnetic 
parameter/ Grashof number for heat transfer / 

Grashof number for mass transfer while the 
increase of oscillation of frequency produces the 
opposite effect. 

 The skin friction enhances under the effect of the 
visco-elastic parameter. 

 The temperature and the concentration fields are 
unaffected due to the variation of visco-elastic 
parameter. 
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