Design Optimization and Installation of Oil Fired Furnace Over Induction Furnace

Bhaskar Dhiman, O.S. Bhatia

Abstract— By installing the induction furnace in place oil fired furnace the productivity increased and production cost is decreased. Due to high cost saving its payback period is very short. Optimization of induction furnace is done carefully in area of billet feeding. The stress given on to minimize the human labor and to gain more automation. While designing various components economy, compactness, cost reduction and weight reduction are kept in mind. Cost estimation of each component done suitably. In the end cost analysis done between oil fired and induction furnaces in order to observe differences obtained in production cost and productivity.

Index Terms— Automatic Billet Feeder, Cost Analysis, Cost Estimation, Design, Induction Furnace, Installation, Oil Fired Furnace, Optimization.

1. Introduction

he induction furnaces are more beneficial than the oil fired furnaces. So is necessary to design, optimize and install the induction furnace over the oil fired furnace in order to gain more efficiency. In this paper we have designed automatic billet feeder system for the optimization of the induction furnace. By using the automatic billet feeder system the quantity of human workers can be minimized also it contributes towards to increased productivity with time savings. The automation can be increased by adapting the automatic billet system.

2. PROBLEM STATEMENTS

Following are the problems in oil fired furnace as compared to the induction furnace-

- 1. High initial startup time.
- 2. More cycle time and less productivity.
- 3. Temperature cannot control precisely.
- 4. Effects on material properties.
- 5. Non-uniform flame distribution.
- 6. Oxidation of metal, scale formation.
- 7. Carbon loss of metals and emission of pollutants. Etc.

To overcome all these problems the induction furnace should be used in place of oil fired furnaces. They shold be designed, optimized and installed properly inorder to reduce production cost and increase productivity.

3. DESIGN OF VARIOUS COMPONENTS

Density (ρ) =7850 kg/m³

3.1 Design of Drum:-

Material C45

 ρ (Density) =7850 kg/m³ S_{ut} (Tensile Strength =600 N/mm² S_{vt} (Yield Strength) = 380 N/mm² BHN (Brinell hardness number) = 145

3.1.1 Load Calculations

1. Mass of cylinder:-

L (Length of sheet) =1000 mm

h (Thickness of sheet)=5 mm

b (Width Of Sheet) = 2016.9 mm

t (Thickness of plate)=10 mm

d (Outer diameter of drum shaft) =642mm

 V_1 = Volume of Cylinder

 $V_1=L\times b\times h=0.01m^3$

 $m_1 = V_1 \times \rho = 79.16 \text{ kg}$

 $m_1 = 79.16 \text{ kg}$

2. Mass of pipes (24 pipes):-

Weight of pipe/m=8.10 kg

Total weight of pipe $(m_2) = 8.10 \times 24$

 $m_2 = 194.4 \text{ kg}$

3. Mass of plates (forward and backward):-

 $V_3 = (\pi/4 \times L \times d^2) - (\pi/4 \times L \times 24 \times d_h^2)$

 V_3 = Volume of Plates

d_h = Diameter of plates (Total no of plates = 24)

 $V_3 = (3.14/4 \times 10 \times 642^2) - (3.14/4 \times 10 \times 24 \times 73^2)$

 $=2.2326\times10^{-3}$ m³

 $m_3=V_3\times \rho$

 $m_3 = 17.526 \text{ kg}$

4. Mass of drum shaft:-

Mass $(m_4) = V \times \rho$

 $=6.9115\times10-3\times7850$

 $m_4 = 54.25 \text{ kg}$

5. Mass of ring gear (approximate):-

Mass $(m_5) = V \times \rho$

 $=4.41\times10^{-3}\times7850$

 $m_5 = 34.62 \text{ kg}$

6. Load:-

Mass of 1 billet=3 kg

Total no of billets can be loaded=144

Mass of 144 billets=144×3

 $m_6 = 432 kg$

7. Total mass of system in loaded condition or working load:-

 $m=m_1+m_2+m_3+m_4+m_5+m_6$

=79.16+194.4+17.526+54.25+34.62+432

Bhaskar Dhiman, M. Tech student of Mechanical Engineering (specialize in Production Engineering), Green Hills Engineering College Solan, India. E-mail: bhaskaradhiman@gmail.com

O.S Bhatia, Professor in Mechanical Engineering Department, Green Hills Engineering College Solan, India. E-mail: onkarnimish@gmail.com

m=830 kg As, Weight (W) =mg

=830×9.81 W=8136.7 N

8. Torque requirement:-

T (Torque) =W×r

Where w = load acting on system.

r = pitch circle radius of ring gear.

 $T = 8136.7 \times 0.321$

=2611.88 N-m

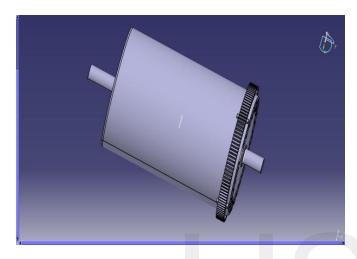


Fig. 1 (Drum)

3.2 Design of Cover Plate:-

Material C45

 $\rho = 7850 \text{ kg/m}^3$

 $S_{ut}=600 \text{ N/mm}^2$

 $S_{vt}=380 \text{ N/mm}^2$

B.H.N. =145

Dimensions-

PCR (Pitch circle radius) =277.721 mm

OD (Outer diameter) =642mm

Thickness of plate= 10mm

Internal diameter=80mm

Diameter of slots=75mm

No. of slot = 1

3.3 Design of Drum shaft:-

d (Outer diameter of the shaft)=642mm

d_a (Diameter of gear)=720mm

G (gear ratio) =6

L (Length of the shaft) =1000 mm

W (Total weight) = 8×10^3 N

V (Speed) = 8.33 m/s

 τ_s (Shear stress)=50 N/mm²

 σ_t (Tensile stress)=115 N/mm²

 k_b (Load correction factor)=2

k_t (Theoretical stress concentration factor)=1.5

φ=20°

F_t (Tangential force) =7255 N

 F_r (Radial force) = 2640.60 N

F (Resultant force) = 720060 N

M (Maximum bending moment on shaft) =1158.81 N-mm

 T_e (Equivalent torque) = 4551.16×10³ N-mm

Me (Equivalent bending moment) =3434.39×10³ N-mm

By maximum shear stress theory

 $\tau_{max}=16T_e/\pi d^3$

 $50=16\times4551.16\times10^3/\pi d^3$

d=77.39mm

By maximum principal stress theory.

 σ_{tmax} =32 $M_e/\pi d^3$

 $115=32\times3434.39\times10^3/\pi d^3$

d=61.55mm

From above equations greater value is selected.

d=77.39mm

Take d=80mm

Material selection.

Alloy steel 50Cr1V23

 $S_{ut} = 190-240 \text{ kgf/mm}^2$

 $S_{yt}=180 \text{ kgf/mm}^2$

BHN=500-580

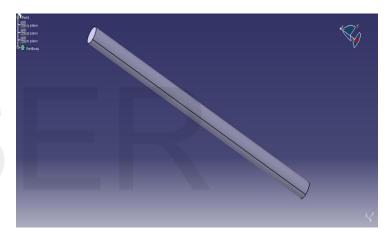


Fig. 2 (Drum Shaft)

3.4 Design of Ring Gear and Pinion

T (Torque) = 2611.88 N-m

N=100rpm

M (Module) =6mm

 Z_p (Number of teeth on pinion) = 20

 Z_{α} (Number of teeth on gear) = 120

P (Power) =7500 W

 $N_f = 1.5$

φ (Pressure angle) =20°

e (Tooth error)=15×10-3mm

c (Dynamic factor)=11400e

Material selected C45.

S_{ut}=600 N/mm²

 $S_{vt}=380 \text{ N/mm}^2$

BHN=460

Effective load

V (Speed) = 0.628 m/s

F_t (Tangential load) = P/V =11936.62 N

 $C=11400e=11400\times15\times10^{-3}$

C=171 N/mm

 $F_{t(max)} = k_a.k_m.F_t$

=1×1×11936.62 =11936.62 N

F_d (Dynamic load) =1805.038 N

 $F_{eff} = k_a.k_m.F_t + F_d$

 $=1 \times 1 \times 11936.62 + 1805.038$

=13741.658N

Beam strength.

As both gear and pinion are made of some material, pinion is weaker than gear in bending .Hence it is necessary to calculate the beam strength of pinion teeth.

 $Y_p = 0.484 - (2.87/Z_p)$

 $Y_p = 0.3405$

 $\sigma_b = S_{ut}/3 = 600/3$

=200 N/mm²

 $F_b = \sigma_b \times b \times m \times y_p$

 $=200\times60\times6\times0.3405$

 $F_b = 24516 \text{ N}$

The factor of safety available against bending failure is given by

 $N_{fb}=F_b/F_{eff}$

=24516/13741.658 =1.784

Since available factor of safety is greater than required therefore design is safe against bending failure. Thus material selected C45 (S_{ut} =600N/mm2 BHN=460) is suitable for design. Dimension of gear pair.

m (Module)=6mm

 Z_p (Number of teeth on pinion) = 20

 Z_g (Number of teeth on gear) =120

b (Face width)= $10\times M=10\times 6=60$ mm

 d_p (Diameter of pinion)= $m \times Z_p = 6 \times 20 = 120$ mm

 d_a (Diameter of gear)= $m \times Z_g = 6 \times 120 = 720 mm$

a (Centre distance)= $(d_p+d_q)/2=420$ mm

h_a (Addendum)=6mm

 h_f (Dedendum)=1.25×m=7.5mm

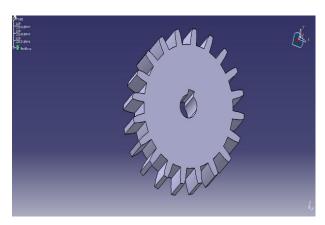


Fig. 3 (Pinion)

Fig. 4 (Ring Gear)

3.5 Design of Pinion Shaft

Material C45

 $S_{ut}=600N/mm^2$

 $S_{vt}=600N/mm^2$

 $K_b=1.5$, $K_t=1$, $N_f=1.5$

 $\sigma_{all} = S_{vt} / N_f$

=600/1.5 =400N/mm²

 $\sigma_{all} = 400 \text{ N/mm}^2$

 τ_{all} =0.55 S_{ut}/N_f

 $=0.55\times600/1.5$

 $=200N/mm^2$

 $\tau_{all} = 200 N/mm^2$

Maximum bending of shaft.

M=FL/4 =8188.95×380/4

M=777.95×103 N-mm

Equivalent torque on shaft.

 $T_e = 3054.26 \times 10^3 \text{N-mm}$

 $M_e = 2305.08 \times 10^3 \text{N-mm}$

Design of shaft by Max-shear stress theory.

 $\tau_{max} = 16T_e/\pi d^3$

 $200=16\times3054.20\times103/(\pi d^3)$

d = 43.26 mm

Design of shaft by maximum principle stress theory.

 $\sigma_c = 32 M_e / (\pi d^3)$

 $400=32\times2305.08\times103/(\pi d^3)$

d=30.06mm

Taking larger value from above two equations.

d=45mm

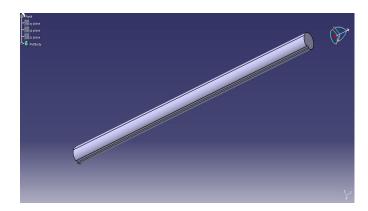


Fig. 5 (Pinion Shaft)

3.6 Design of Square Key:-

As, d=45mm

 $N_{f} = 1.5$

Material C45

 $S_{vt}=600N/mm^2$

 $S_{ut}=600N/mm^2$

W=h=d/4=45/4

=11.25

Taking w=h=12mm

 τ_{all} =0.5×S_{ut}/N_f

 $= (0.5 \times 600)/1.5$

=200 N/mm²

 $\sigma_c = S_{vt}/N_f$

=400 N/mm²

Crushing of key:-

Considering Crushing of key

L=46.735mm

Shearing of key

L=48.68mm

Taking larger of above equations.

L=48.68mm

Taking L=50mm

Dimensions of key.

w=13mm

h=13mm

I=50mm

Quantity=5(nos)

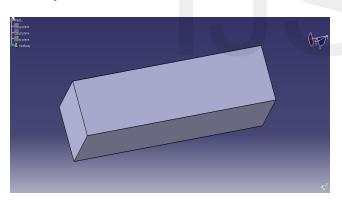


Fig. 6 (Square key)

3.7 Selection of Bearings:-

1) For drum shaft

Given data, d=80mm

Load=830 kg

Weight=3727.8 N

Axial load $(F_a) = 3727.8 \times \sin 45^0 = 2396.18N$

Radial load (F_r) = 3727.8× cos40⁰ = 2855.7 N

Bearing life in hours (Lh10) =8000 hrs. (From catalog based on application).

N=100rpm

Type- taper roller bearing

For taper roller bearing (from catalogue)

X = 0.4

Y=0

Load factor (ka) =1.2

Equivalent dynamic load.

 $P_e = F_r \times k_a$

=3426.8N

L₁₀=48 million revolutions.

C=10946.14N

From catalogue bearing available with 60mm bore diameter are:-

Bearing	Basic dynamic	Outer diameter	Width (B)
no	capacity (kN)	(mm)	(mm)
30215	99	110	23.75
32212	125	110	29.75
30312	168	130	33.5
32312	229	130	48.5

Table No 1 (Bearings for drum shaft)

So, bearing no. 30215 is most economic for our application therefore bearing no. 30215 is selected. Quantity= 2(nos).

2) For Pinion Shaft

Type -taper roller bearing

Axial load (Fa) = 2396.18N

Radial load (Fr) =2855.7 N

Bearing life in hrs. =8000 hrs (from catalogue based on application)

 L_{10} =48 million revolutions.

C=10.946kN

From catalogue bearing available with 50mm bore diameter for calculated dynamic load are

Bearing	Basic dynamic capacity	Outer diameter	Width
no.	(C), kN	(mm)	"B"
			(mm)
30210	76.5	90	21.75
32210	82.5	90	24.75
30310	12.5	110	29.75
32310	172	110	42.25

Table No 2 (Bearings for pinion shaft)

Bearing no. 30210 is most economical and suitable for our application.

Therefore bearing no. 30210 is selected for system Quantity=2(nos)

3.8 Material for Base Plate:-

Cast iron

ISI grade-GCI 20

Overseas nearest equivalent= DIN 1691/GG22

Tensile strength=200 N/mm² (minimum)

BHN=179-223

Bending stress=3kgf/mm2

Pressure=10 kgf/cm²

3.9 Slope of Drum / Inclination Angle of Drum:-

Material of pipe=Mild steel

 $\begin{array}{l} \mu\text{=}static/kinetic friction co-efficient}\\ \mu\text{=}0.61(\text{For mild steel})\\ \text{We know that.}\\ \theta\text{=}tan\ (0.61) = 31.38^{0}\\ \text{Taking}\ \theta\text{=}40^{0} \end{array}$

3.10 Specifications of Motor:-

Type-stepper motor [6].
Type code=ACS550-01-031A-2
Frame size=R2
Number of steps=24.
Power (Pn) =7.5kW or 10 hp
Current (I) = 31 A

Electronic equipments like controller (8051) and photo sensor may be used in system for positioning purpose.

3.11 Complete Assembly:-

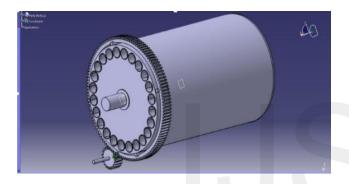


Fig. 7 (Drum Assembly)

4 CONSTRUCTION AND WORKING

- 1) Mount drum assembly on frame in inclined position
- 2) Place small frame in front and large frame at rear
- 3) Mount drum assembly in such a way that ring gear comes in front (near to smaller frame).
- 4) Then assemble pinion and stepper motor.
- 5) Assembly of pinion and stepper motor should be below the drum to make system compact.
- 6) Mount light emitter at rear end in such a way that light beam passes through the axis of pipe when pipe is at lowest bottom position.
- 7) Also mount receiver in same line of action at front end.
- 8) Mount drum assembly on frame in inclined Working.
- 9) Load the drum with billets.
- 10) Start the machine.
- 11) As soon as machine starts conveyor also starts to move then billets from pipes starts to slide on conveyor automatically by gravity.
- 12) When last billet of pipe fall on conveyor then light beam fall on receiver.
- 13) When light beam fall on receiver then it sends signal to controller to rotate stepper motor by 1 step (in case of 24 step motor) i.e 15 degree.

- 14) After receiving signal from controller, motor rotates by 1 step (15 degree) and next billet loaded pipe comes in front of light beam and it obstruct the beam to fall on receiver till last billet of pipe falls on conveyor.
- 15) In this way process goes on.
- 16) Controller program is programmed in such a way that after receiving 24 such signals m/c will stop automatically for reloading.

5 COST ESTIMATION

It is the art of finding the cost which is likely incurred on the manufacturers of the article before its actually manufactured thus if the calculation of probable cost of an article before manufacturing the tool. It also includes predetermination of quality and quantity if material and labor required.

5.1 Aims of estimation-

- 1. To help in deciding the methods of manufacturing.
- 2. To decide about the amount of overheads.
- It helps to decide whether and particular material should be purchased from the market or from manufacturer. Etc.

5.2 Cost estimation-

Present market rate of raw material-C45= 60 Rs/kg Alloy steel (50Cr1V23) =72 Rs/kg Cast iron (GCl20) = 40 Rs/kg Mild steel (pipe) = 60 Rs/kg

5.3 Machine operation cost per hour: (Rs/hr)

- 1. Lathe m/c- 60/80
- 2. Milling m/c- 80/90
- 3. Grinding m/c- 70/75
- 4. Drilling m/c- 40/45
- 5. Surface grinding-85
- 6. Counter boring-45
- 7. Tapping-30
- 8. Welding-80
- 9. Cutting-40
- 10. Rolling-60

5.4 Raw material cost

Sr.no	Name of	Kg	Market	Total cost
	parts		rate/kg	of
				parts(Rs)
1	Drum shaft	55	72	3960
2	Cover	35	60	2100
	plate(front			
	and end)			
3	Cover	17	60	1020
	plate(fixed)			
4	Pinion shaft	15	60	900
5	Drum cylin-	80	60	4800
	der			

6	Pipe	195	60	11700
7	I-section	250	60	1500
	beam			
8	Ring gear	-	3000+2000	5000
	and pinion			
9	Base plate	20	40	800
10	Bearings	4(no)	400/500	1600
11	Stepper	-	15000	-
	motor			
	Total cost			61,880

Table No. 3 (Raw Material Cost)

5.5.7 Part name-I-Section

Sr.

no

1

2

3

Operation

Cutting

Welding

Grinding

Total cost

5.5.5 Part name-pipe

Sr.	Operation	Time(hr)	Market	Cost(Rs)
no			rate/kg	
1	Cutting	3	40	120
2	Welding	5	80	400
3	Grinding	6	70	420
	Total cost			940

Table No. 8

Time(hr)

1

4

3

Table No. 9

Market

rate/kg

40

80

70

570

Cost(Rs)

40

320

210

5.5 Operation machining cost of each individual parts

5.5.1 Part name- Drum shaft

Sr.	Operation	Time(hr)	Market	Cost(Rs)
no.			rate/kg	
1	Turning	4	80	320
2	Grinding	0.5	80	40
	Total cost			360

Table No. 4

5.5.2 Part name- drum cover plate (front and end)

Time(hr)

1×2

3×2

2×2

Market

rate/kg

40

45

70

Cost(Rs)

80

270

280

630

5.5.6 Part name-drum cylinder

Sr. Operation Time(hr) Market Cost(Rs) rate/kg No 1 Cutting 40 40 2 Rolling 1 60 60 3 Welding 1 80 80 Grinding 70 70 total 250

Table No. 5

Table No. 10

5.5.3 Part name- cover plate

Operation

Cutting

Drilling

Grinding

Total cost

Sr. no

2

3

Sr.	Operation	Time(hr)	Market	Cost(Rs)
no			rate/kg	
1	Cutting	1	40	40
2	Drilling	3	45	135
3	Grinding	2	70	140
	Total cost			315

Table No. 6

5.5.8 Part name-base plate

Sr. No.	Operation	Time(hr)	Market	Cost(Rs)
			rate/kg	
1	Cutting	1	40	40
2	Welding	2	80	160
3	Grinding	2	70	140
	Total cost			340

Table No. 11

5.5.4 Part name-pinion shaft

Sr.	Operation	Time(hr.)	Market	Cost(Rs)
No			rate/kg	
1	Facing	0.5	80	40
2	Turning	0.5	80	40
3	Milling	0.5	90	45
	Total cost			125

Table No. 7

5.5.9 Total machine cost:

=360+630+315+125+250+940+570+340=3530 Rs.

Raw material cost=61,880 Rs.

Total cost=raw material cost+ machining cost

=61880+3530 =65410 Rs

Overhead charges=15% of manufacturing cost =9811 Rs.

Indirect expenses (material handling, transportation etc) = 10% of manufacturing cost = 6541 Rs.

Inspection expenses=5% of manufacturing cost

=3270 Rs.

Total cost=85000Rs. (approximate cost).

Actual cost will be greater than estimated cost.

6 COST ANALYSIS

Oil-fired furnace:-

Price of furnace oil-56.66/litre

Oil consumption-125 lit/ton (8 hr.)

Total cost per shift-125 lit×56.66=7082.5 Rs.

Induction Furnace (400kw/hr.):-

Electricity Tariff rate-8.30/unit

Capacity-540 kg/hr.

Power consumption per ton-770(unit) ×8.30=6391Rs. (2hr)

6.1 Result (induction over oil fired furnace)

Cost Saving per ton: 7082-6391=691(2hrs) Cost save per shift: 691×4=2764(8hrs)

% of cost saving per shift :(2764/7082.5) ×100=40%

Productivity per shift: 4 ton (8hrs.). Cost saved per day- 2764×2=5528 Rs. Annual saving=20 lakhs (approximately).

Productivity increases four times as that of oil fired furnace. At the same time production cost reduces by 40% per shift.

7 CONCLUSION

We have observed that by installing the induction furnace over oil fired furnaces the problems faced in oil fired furnaces can be minimized. Due to installation of induction furnace productivity increases four times and also there is saving in production cost of 40%. Due to 40% cost saving its payback period is very short. Optimization of induction furnace is done by installing "Automatic Billet Feeder". It replaces human labour and feed billets in furnace automatically. Its design and manufacturing process is made simple. While designing of its components economy, compactness and weight reduction are kept in mind.

8 REFRENCES

- [1] PSG design data handbook revised edition 1978
- [2] R.S. Khurmi and J. K. Gupta, "A Text Book Of Machine Design", Fourteenth edition
- [3] Er. Arun Kumar, "Data Book For Designing Machine Elements"
- [4] K. Mahadevan and K. Balaveera Reddy, "Design Data Handbook", Third edition
- [5] R.S. Khurmi and J.K.Gupta, "Theory Of Machines", First multicolour edition
- [6] Stepper motor specification
 http://www.abb.com/product/seitp322/216a9fdb3ea9aab144257b64003
 eda2.aspx?tabKey=2&gid=ABB3AUA0000003379&cid=9AAC20708

