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ABSTRACT : We have Extended Laplace-Mellin Integral Transformation (LMIT) to a class of Generalized Function. In this paper
we discuss the ‘Testing Function Space’ 8, .q and its dual 8, },.q. We have proved that £, .4 is ‘Complete Space’. We
have derived some lemmas those are ‘e ! mP~' € LM, .4’ , ‘D(I) is a subspace of LM,, .4 and ‘LM, .q iS a dense
subspace of E(J)’ . ‘Analyticity Theorem’ of Laplace-Mellin Integral Transformation has been derived and ‘Some Operation
transformation formula’ for this transform has been proved.
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1 INTRODUCTION
Let us consider a transform:

LM [f(,m)] =F(s,p) = J-w fwf(l, m) e St mP~tdl dm

Where f(I,m) is a suitably restricted conventional
function defined on the positive real line 0 <Il< e &
0<m<e and 0<Res<o & 0 <Rep <o.This
transformation maps f(l,m) into a function F(s,p) of the
complex variables s and p . We extend the transform to a
class of generalized functions [4].

2 TESTING FUNCTION SPACE £9.,.q AND ITS
DUAL M 1.4

Let us take an open set I on positive real line. Let
LI, p.ca is the space of all complex valued smooth function
¢(l,m) defined on J, where a,b,c,d,l,me R" and s,pe C",
such that for each ¢(I,m) € &M, .4, we have

@1) Vi dlm) =
SUP —co<i<eo |Ja,b(l) Ac,d(m) mk+1 ®{ gfﬂ ¢(l' m)| <o
—co<Mm< oo
for each J,k=0,1,2, . S
bounded.
al 0<i<o
h D2 { €
where  Japr() 27 o —e<l<O,
A [m© <m<
and  ALamy2{T_, N

Jap (D) and 4. 4(m) both denotes the spaces of all complex
valued smooth functions ¢(I,m)on 0<I< oo & 0<m<
o [8].

Therefore, {yj,k }?:0 is the collection of countable
k=0
seminorm on the linear space 2M, ;4. Again y,, is the

norm on  Mgp.q. Thus {y;, )= is the countable
k=0
multinorm on the linear space £M, ;.4 which is called a

countably multinormed space on 3.

LEMMA 21 2M,;,.q IS A COMPLETE SPACE
For each non-negative numbers j and k, we take a
Cauchy sequence {¢.}i=; in 8IM,,.q. Therefore, for
every t,u > H;,, there exists a small arbitrary positive
€ > 0, such that
Yik [ ¢t(l' m) - ¢p.(l'm)] <e

Jok=0,1,2 ..

Consequently, we get
| M1 D] D [ ¢ (Lm)— ¢ (Lm)]|<e
But there exists a smooth function ¢ (I, m) such that for each
Jk,l and m ,we have the limit ¢,(,m)—> ¢(l,m) as
u— . So,we get
(22) |mro! DL [ Um)— pUm)]| < e
0<Ii<eoand0< m<e, t>H
Thus for each j, k the seminorm y;,(¢,— ¢) -0, as
t oo,
Also, we have
(2.3) | M1 D] DK ¢ (Lm)|<C
where C is a constant not depending upon .

An appeal to (2.2) and (2.3) gives

| m*1 D! DX p(Lm)]|

= |m D] D [P Lm) + p(Lm) — ¢ (L m)]|
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< |m** o D [¢ULm) — ¢ Lm]|

+|m D] DE ¢ (Lm) |

<e+C

Therefore, we get
(2.4) | m*1 D] Dk p(Lm)|<e+C
which shows that the limit function ¢(I,m) € LM, q -
= LM, cq thisisa complete space.

Therefore £, ;.4 is complete countably multinormed
space on the open set 3.

Let £M',,.q be the dual of £M,,.q. Thus f €
BiUt'a_b_c_d if it is a continuous a linear functional on
LI, pca- Since LM, ;, .4 is a testing- function space [9] . So
we say €M ,,.. is the space of generalized functions
which is also a complete space due to [9]. Thus for any
fELM pea and ¢ € 8M,, .4, the generalized function
isdenoted as < f,¢ >.

LEMMA 2.2 TOPROVETHAT e s'mPle8M,, 4
Let mkt ) Dk [eStmP1] = Py (I, m)
where Pj (I, m) be the polynomials in ,m for all j, k =
0,1,2,..., 0<lm<eand 0 < Res <eand 0 < Rep < oo,
Therefore, we get

sup | m<*? D Dk [e7 mP~]| is bounded

0<I<eo
o<m<oo
foreach 0<s<ooand 0<p<oo j, k=
0,1,2, s e
Hence, = e tmPreMy,a

LEMMA 2.3 : D(3) IS A SUBSPACE OF £9R,,.
Let ¢ €D(3) = sup | D] DY $(l,m)| isbounded
Imes

where ¢(l,m) is a complex valued smooth function
nonzero within the compact set K of 3 =]0,[ and zero
outside K.

= sup | mk*? o Dk d(,m)| is

0<I<oo
o<m<ee

bounded = ¢ € M, .4
= D(X) S LMypca

From the above relation ,we find a convergent sequence in
D(3) implies the sequence also converges in £M,pcq-
Consequently, the restriction of f € M ;.4 to D(J) is in
D'(3) . However, D(3J) is not dense in 8M, ;.. Thus we
cannot identify 8, , ., with a subspace of D'(3). Actually
different members of £M'y,., can be found whose
restriction to D(J) are identical.

LEMMA 24 : 2M,,., IS A DENSE SUBSPACE OF
E(3) '
Let ¢ € 8My,.q = sup | m**1 D) D p(I,m)]| is

0<I<oo
0<m<eo

bounded, where j,k =0,1,2, ...
= sup| D] Df, ¢(I,m)| isbounded,
L mesS

where S is a compact set of I = ]0,o[ .

=> ¢ €eER)
Therefore, we get LM, p.qa S E(J) .
We also get form the above lemma D(J) S &M, pcq S
E(3) . Also D(3J3) is a dense subspaces of E(3J) . It follows
that M, ;. 4 is a dense subspace of E(3J). Hence we get
the result.

3 EXTENSION OF £Mt,, .« TRANSFORM TO A CLASS
OF GENERALIZED FUNCTIONS

Let function f be a 8M,, q-transformable generalized
function if it satisfied following property :

1. f is a functional on some domain J(f) of
conventional functions.

2. f is additive in the sense that if ¢, 8, ¢ +0 are all
members of (f) , then < f, ¢+ 60 >=<f,¢p > +<
f,0>isin My pca-

3. 8Mypca € I(f) the restriction of f to &M, 4 isin
Qm'a,b,c,d .

Since, e S'mP 1 € My peq for 0<I<o& 0<M<oo
and 0 < Res < « & 0 < Rep < «; We define the generalized
LI, p c.a—transform of f by
F(s,p) ={f(lLm), e mP™1)
fors,p € Qf and Qf = {s,p: 0 < Res, Rep < }.
Qf is called the region of definition for £, . 4 -transform
and (0,e) are the abscissa of definition.

4 ANALYTICITY THEOREM OF £, ;, .« TRANSFORM
STATEMENT: F(s,p) = {f(l,m), e ' mP~t) for s,p € Qf
and Qf ={s,p:0 < Res < = &0 < Rep < =}, then F(s,p) is
analytic on Qf and DD, F(s,p) = (f (L, m),%aa—p e St mP~1),

PROOCF : Let s and p be two arbitrary member . As and Ap
are respectively very small complex number respectively
ons and p, such that |As| —» 0 and |[Ap| = 0.
F(s,p) = (f(Lm), e mP~1)
F(s+8s,p + Ap) = (f(L,m), e"C+49t m@+o»-1 )
Therefore we have
F(s+ As,p + Ap) — F(s,p)

= fm), L et L ey
" 0s

As Ap dp
= (f(l' m)' lpAs Ap )
where,
l — U —sl p—1
lpAsAp('m)_&e %m
1 a 1
—— —(s+As)l __ ,-sl] _ = -sl _—_ (p+Ap)-1 _ ., p—1
As{[e ¢ ] ase } Ap{[m m ]
_ imp—l}
dp

Now, we have to show that Yxsp, = 0in 8, .4 as

|As| = 0 and |Ap| = 0. Since f(I,m) € Qim'a'b'c'd , so this
will imply that (f ([, m),asap } = 0 as |As| —» 0 and

|Ap| = 0. For, let €, and C, denote the circle with center at s
and p respectively withr; and 1, , we get

(_gl)j(gm)k lpAs Ap
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A]'S{QJ [e—(s+As)l _ e—sl]

J
aagi‘ e—sl} ﬁ{ @i{n [m(p+Ap)—1 _ mp—l]
k
9o, m”_l}
ap

(Interchanging the differentiation on s and p with the
differentiation on [ and m)

1

Yaonp = E{[Uj(s +4s,1) = Uy(s, D)] - U G, z)}
1

; E{[Vk(p +p, m) — Vie(p,m)]

- % Vi(p, m)}
Where U;(s +As, 1) and U;(s,[) are polynomials in / such
that Ui(s,) » Uj(s+As,1) as s = s+ As .Similarly
Vi(p + Ap,m) and V,(p,m) are polynomials in m such that
Vi(p,m) - Vi (p + Ap,m)as > p + Ap .
By Cauchy’s integral formula , we get
@{ gfn lpAs Ap(l' m)

_ 1 J' 1 1 U Nd

T 2miAs Cl[g—s—As Q—S] je. D) de
1

- —— | Ui(o, D) d
J;l [(Q_S)Z] j(Q ) Q}

1 J' 1 1 v d

* _

2miAp (Je, [a—p—Ap G—p] k(o,m) do

— fcz [ﬁ] Vi (o,m) da}

Where ¢ € C; ando € C, ,the respectively circles with
centers s & p and radius r; & r,. Therefore, we get
1

o] Dy Yoy = s || [
Lo TR 2miAs (U lo—s—As o—s

A5 Vyend
—(Q_S)Z] (e, D) 9}

1
*ZﬂiAp {J;z[a—p—Ap_a—p

Ap
_ W] V,(o,m) da}

_AsAp 1
—(2mi)? {J;l [(Q —s—As)(o— S)z] Ui(e. D) dQ}

" {J;z [(U -p- Alp)(a _ p)z] Vi(o,m) da}

Let lo—sl=Rylo—s—As|=r,lc—p—Ap| =
R, &|lc—p—Ap|=r, (n <R,and r, <R;). Since s €, &
pEC,and 0 <l <o & <m< oo,

SO/ |(7a,b(l) lc,d(m) mk+1 l]j(Q' l) Vk(o-' m)| =
M

Thus, we get

|Tap (1) Aea (m) m¥+? @f D Pasap (L)
1
< laslia |7f d |f|da|
(2 )? P (Ry Ry)*rymy [ ¢ C,

|As||Ap| 2mR, 21R,

1
(Ry Ry)?*1ym,
< |As||Ap|

_(2 )?

R, R,m1,
From the above equation, it follows that s, = 0 in
LM, pca as|As| — 0 and |Ap| — 0.This completes the
proof.

5 OPERATION - TRANSFORM FORMULA OF
M, .a TRANSFORM
5.1 DIFFERENTIATION

If (I, m) € &M, g Where &M, ;.4 is the space
of all complex valued smooth functions (I, m) . Such that for
¢(l,m) € LM, .q, we have

}/j,k ¢(l' m) =

SUP —wci<es [€ T MPTL D] DY (L, m)| < oo

—oo<Mm< e

foreach j,k=0,1,2,...... is bounded.
We shall prove that
Yik [0 D o(,m)] = Yirvis1 [P(LM)]

PROQFEF:- It is easy to say that ¢ - —D¢ is a continuous and
linear mapping of 8, ;.4 onto itself. Therefore the adjoint
mapping f — Df is also a continuous and linear mapping
of 8M 'y, .q onto itself where 8, ., is the dual of
LM, p.c.a (Zemanian [9]) ,we get
(gl gmf(l' m), ¢(l' m)) = (f(l' m)' (_gl)(_ gm)(p(l' m))
= (f(l' m),s(p - 1)e_Sl mp—Z)
Similarly, we also define a mapping f — 3){ DE f isalsoa
continuous and linear mapping of LMy 5 .4 -
(D) D f(Lm), p(L,m))

= {f(L,m), (=D (= Dp)* p(L,m))

={f(m),s” (p— Dy e mP~*77)
foreach j,k=0,1,2,......

where (a), =

a(a+1)(a+2)...... (a+k-1) k=123, ......

Therefore , we get

Vil $(Lm)]) = M D] D, f

=s/ (p= D F(s,p — k) s,p—k
€ Of

Again differentiating, we get

= }/j,k [_gl ®m ¢(l' m)] = Sj+1 (p - 1)k+1 F(S'p -
(k+ 1)) = Vjsrier [PULm)]
Hence we get the result.

5.2 MULTIPLICATION BY AN EXPONENTIAL AND
POWER OF m

Let @, f be two complex number , we shall prove
d(,m) > e St mP~l¢(l,m) is a continuous and linear
mapping of £, ;.4 on toitself .

(flm),e mf p(l.m)) = F(s +a,p+p)
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PROOF :- Let ¢(I,m) € LM, p . q, We have

D] Dhfe™ mf p(l.m)]

J k
=Z Z ‘c. k¢, D Te ™ DIt mP D] Dy p(Lm)
r=0 t=0
J k
_ Z Z Ic. ¥, (—a) " e BB = 1) e . B-t
r=0 t=0

+1) mFH1 DT DL p(l,m)
Therefore , we get
| ¢ *Co () e BB = 1) e (B—t+1)mf e
<C
Thus, we get

ik
Viele ™ mf gUm] <€D >y [B(Lm)]
r=0 t=0
It follows that ¢(I,m) is a continuous and linear
mapping of £, ;.4 onto itself . Therefore, the adjoint
mapping  f(Lm) - e *mf f(IL m) of ¢(l,m) -
e~ mP¢(l,m) , is also continuous and linear mapping of
LM, .q onto itself due to theorem of Zemanian , where
LM 4} cq is the dual of LM, .4, We get
(e mf f(L,m), (L, m) = (f(L,m),e= mF G(L.m))
— (f(l, m)'e—(s+a)l mp+[)’—1 )
From definition of generalized function
LM [e ™ mP fF(L,m)]= F(s+a,p+p)
€ Qf
Hence we get the result.

s+ap+pf

5.3 MULTIPLICATION BY AN POWER OF I AND
log m

Let @ and B be two real numbers , such
thata, f = 0 . We shall prove ¢(I,m) - [* (logm)? ¢(l,m)
is a continuous and linear mapping of 2, , .4 onto itself .

PROOF :- Let ¢(I,m) € LM, p, . q, We have
D] D [1* (logm)P ¢(1.m)]

J k

=D > e ke, D71 Dt (logm)® Df Dby $(Lm)
r=0 t=0

Therefore , we get

J k
| D/ DL[1% (logm)? p(L.m)]| < K Z Z | D! D, p(L,m)

r=0 t=0

J k

Ve[l (ogm)® $Um] <KD" "y [pm)]

r=0 t=0
It follows that ¢(,m)—1%(logm)? p(L,m) is a
continuous and linear mapping of 2M,,., onto itself .
Therefore, from the theorem of Zemanian we define a
adjoint mapping f(I,m) = 1% (logm)? f(I,m) of is also

continuous and linear mapping of £M ,, .4 onto itself ,
where 20, ;.4 is the dual of LM, .4, we get
(L (logm)f(L,m), (L, m)) = (f (L, m), L (logm)p(l.m))
= (f(,m), I (logm)e~*' mP~* )
= (_@S)(gp)gr(l'm)'e—sl mP~t )
If f be a generalized function of 83, ., then we get
(1« (logm)? f(L,m), (L, m))
= (f(L m), 1% (logm)® (L. m))
= (1%t (logm)P~* f(l,m),l e~ (logm) mP~1)
= (=D,)(D,)(1° (ogm)P ™ f(I,m),e™ mP)
= (=D)(D, (12 (logm)#~? f(L,m), le~*!(logm) m?~*)
= (=D9)*(Dp) (1972 (logm)P~2 f(I,m),e™! mP~1)
= = (=0)%(D,) (fLm), e~ mr™)
From definition of generalized function
eM[ 1 (logm)? f(L,m)] = (-D)*(D,) F(s,p) s,p € Of
Hence we get the result.
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