Analyticity Theorem and Operation-Transform Formula for Laplace-Mellin Integral Transform to A Class of Generalized Function

Dr.M.M.P.Singh and Mrs. Mampi Saha Department of Mathematics, R.U. Ranchi

Dr. M.M.P. Singh, Professor, University Department of Mathematics, Basic Science Building Ranchi University Ranchi, Morabadi-834008, Jharkhand, India . Email-mmps.math.ru@gmail.com.

Mrs. Mampi Saha, Research Scholar, University Department of Mathematics, Basic Science Building Ranchi University Ranchi, Morabadi-834008 Jharkhand, India. Email-sajalmampi@gmail.com.

ABSTRACT: We have Extended Laplace-Mellin Integral Transformation (LMIT) to a class of Generalized Function. In this paper we discuss the 'Testing Function Space' $\mathfrak{LM}_{a,b,c,d}$ and its dual $\mathfrak{LM}'_{a,b,c,d}$. We have proved that $\mathfrak{LM}_{a,b,c,d}$ is 'Complete Space'. We have derived some lemmas those are ' $e^{-sl}m^{p-1}\in \mathfrak{LM}_{a,b,c,d}$ ', 'D(3) is a subspace of $\mathfrak{LM}_{a,b,c,d}$ ' and ' $\mathfrak{LM}_{a,b,c,d}$ ' is a dense subspace of E(3)'. 'Analyticity Theorem' of Laplace-Mellin Integral Transformation has been derived and 'Some Operation transformation formula' for this transform has been proved.

Keywords: Laplace-Mellin Integral Transformation (LMIT), Laplace Transformation, Mellin Transformation, Analyticity Theorem and Operation Transform Formulae.

INTRODUCTION

Let us consider a transform:

et us consider a transform:

$$\mathfrak{LM}[f(l,m)] = F(s,p) = \int_0^\infty \int_0^\infty f(l,m) e^{-sl} m^{p-1} dl dm$$

Where f(l,m) is a suitably restricted conventional function defined on the positive real line $0 < l < \infty$ & $0 < Res < \infty$ & $0 < Rep < \infty$. This transformation maps f(l,m) into a function F(s,p) of the complex variables s and p. We extend the transform to a class of generalized functions [4].

TESTING FUNCTION SPACE LM a,b,c,d AND ITS DUAL LM a,b,c,d

Let us take an open set \Im on positive real line. Let $\mathfrak{L}\mathfrak{M}_{a\,b\,c\,d}$ is the space of all complex valued smooth function $\phi(l,m)$ defined on \Im , where $a,b,c,d,l,m \in \mathbb{R}^n$ and $s,p \in \mathbb{C}^n$, such that for each $\phi(l,m) \in \mathfrak{LM}_{a,b,c,d}$, we have

$$(2.1) \qquad \gamma_{j,k} \ \phi(l,m) \triangleq \sup_{\substack{-\infty < l < \infty \\ -\infty < m < \infty}} \left| \mathcal{J}_{a,b}(l) \ \lambda_{c,d}(m) \ m^{k+1} \ \mathfrak{D}_l^j \ \mathfrak{D}_m^k \ \phi(l,m) \right| < \infty$$
for each $j, k = 0, 1, 2, \dots \dots$ is

bounded.

where
$$\mathcal{J}_{a,b}(l) \triangleq \left\{ egin{array}{ll} e^{al} & 0 < l < \infty \\ e^{bl} & -\infty < l < 0 \\ 0 < m \leq 1 \end{array} \right.$$
 and $\lambda_{c,d}(m) \triangleq \left\{ egin{array}{ll} m^{-c} & 0 < m \leq 1 \\ m^{-d} & 1 < m < \infty \end{array} \right.$

 $\mathcal{J}_{a,b}(l)$ and $\lambda_{c,d}(m)$ both denotes the spaces of all complex valued smooth functions $\phi(l,m)$ on $0 < l < \infty \& 0 < m <$ ∞ [8].

Therefore, $\{\gamma_{j,k}\}_{j=0}^{\infty}$ is the collection of countable seminorm on the linear space $\mathfrak{LM}_{a,b,c,d}$. Again $\gamma_{0,0}$ is the norm on $\mathfrak{LM}_{a,b,c,d}$. Thus $\{\gamma_{j,k}\}_{\substack{j=0\\k=0}}^{\infty}$ is the countable multinorm on the linear space $\mathfrak{LM}_{a,b,c,d}$ which is called a countably multinormed space on 3.

LEMMA 2.1 $\mathfrak{L}\mathfrak{M}_{a,b,c,d}$ IS A COMPLETE SPACE

For each non-negative numbers j and k, we take a Cauchy sequence $\{\phi_t\}_{t=1}^{\infty}$ in $\mathfrak{LM}_{a,b,c,d}$. Therefore, for every $t, \mu > H_{j,k}$, there exists a small arbitrary positive $\epsilon > 0$, such that

$$\gamma_{j,k} \left[\phi_t(l,m) - \phi_\mu(l,m) \right] < \epsilon$$

$$j,k = 0,1,2,\dots\dots\dots$$

Consequently, we get

$$\left| m^{k+1} \mathfrak{D}_l^j \mathfrak{D}_m^k \left[\phi_t(l,m) - \phi_\mu(l,m) \right] \right| \le \epsilon$$

But there exists a smooth function $\phi(l, m)$ such that for each j,k,l and m, we have the limit $\phi_{ij}(l,m) \rightarrow \phi(l,m)$ as $\mu \rightarrow \infty$. So ,we get

(2.2)
$$\left| m^{k+1} \mathfrak{D}_{l}^{j} \mathfrak{D}_{m}^{k} \left[\phi_{t}(l,m) - \phi(l,m) \right] \right| \leq \epsilon$$

$$0 < l < \infty \text{ and } 0 < m < \infty \text{ , } t > H_{i,k}$$

Thus for each j,k the seminorm $\gamma_{j,k} (\phi_t - \phi) \rightarrow 0$, as

Also, we have

(2.3)
$$\left| m^{k+1} \mathfrak{D}_{l}^{j} \mathfrak{D}_{m}^{k} \phi_{t}(l,m) \right| \leq C$$
 where C is a constant not depending upon t .

An appeal to (2.2) and (2.3) gives

$$\left| \begin{array}{l} m^{k+1} \, \mathfrak{D}_l^j \, \, \mathfrak{D}_m^k \, \, \phi(l,m) \, \right| \\ = \left| \begin{array}{l} m^{k+1} \, \mathfrak{D}_l^j \, \, \mathfrak{D}_m^k \, \left[\, \phi_t(l,m) + \, \phi(l,m) - \, \phi_t(l,m) \right] \right| \end{array}$$

$$\leq \left| \ m^{k+1} \ \mathfrak{D}_l^j \ \ \mathfrak{D}_m^k \ \left[\ \phi(l,m) - \ \phi_t(l,m) \right] \right| \\ + \left| \ m^{k+1} \ \mathfrak{D}_l^j \ \ \mathfrak{D}_m^k \ \phi_t(l,m) \ \right|$$

 $\leq \epsilon + C$

Therefore, we get

(2.4)
$$\mid m^{k+1} \mathfrak{D}_l^j \mathfrak{D}_m^k \phi(l,m) \mid \leq \epsilon + C$$
 which shows that the limit function $\phi(l,m) \in \mathfrak{LM}_{a,b,c,d}$. $\Rightarrow \mathfrak{LM}_{a,b,c,d}$ this is a complete space.

Therefore $\mathfrak{LM}_{a,b,c,d}$ is complete countably multinormed space on the open set \mathfrak{I} .

Let $\mathfrak{LM}'_{a,b,c,d}$ be the dual of $\mathfrak{LM}_{a,b,c,d}$. Thus $f \in \mathfrak{LM}'_{a,b,c,d}$ if it is a continuous a linear functional on $\mathfrak{LM}_{a,b,c,d}$. Since $\mathfrak{LM}_{a,b,c,d}$ is a testing-function space [9]. So we say $\mathfrak{LM}'_{a,b,c,d}$ is the space of generalized functions which is also a complete space due to [9]. Thus for any $f \in \mathfrak{LM}'_{a,b,c,d}$ and $\phi \in \mathfrak{LM}_{a,b,c,d}$, the generalized function is denoted as $\langle f, \phi \rangle$.

LEMMA 2.2 TO PROVE THAT $e^{-sl} m^{p-1} \in \mathfrak{LM}_{a,b,c,d}$

Let $m^{k+1} \mathfrak{D}_{l}^{j} \mathfrak{D}_{m}^{k} [e^{-sl} m^{p-1}] = P_{jk}(l, m)$

where $P_{jk}(l,m)$ be the polynomials in l,m for all j,k=0,1,2,..., $0 < l,m < \infty$ and $0 < Res < \infty$ and $0 < Rep < \infty$. Therefore, we get

$$\sup_{\substack{0 < l < \infty \\ 0 < m < \infty}} \left| m^{k+1} \mathfrak{D}_{l}^{j} \mathfrak{D}_{m}^{k} \left[e^{-sl} m^{p-1} \right] \right| \text{ is bounded}$$

for each
$$0 < s < \infty$$
 and $0 $j, k = 0, 1, 2, \dots \dots \dots$
Hence, $\Rightarrow e^{-sl} m^{p-1} \in \mathfrak{LM}_{a,b,c,d}$$

LEMMA 2.3 : D(3) IS A SUBSPACE OF $\mathfrak{L}\mathfrak{M}_{a,b,c,d}$

Let
$$\phi \in D(\mathfrak{J}) \Rightarrow \sup_{l,m \in \mathfrak{J}} |\mathfrak{D}_l^j \mathfrak{D}_m^k \phi(l,m)|$$
 is bounded

where $\phi(l,m)$ is a complex valued smooth function nonzero within the compact set K of $\Im =]0,\infty[$ and zero outside K.

$$\Rightarrow \sup_{0 < l < \infty} \left| m^{k+1} \mathfrak{D}_l^j \mathfrak{D}_m^k \phi(l, m) \right| \text{ is}$$

bounded $\Rightarrow \phi \in \mathfrak{LM}_{a,b,c,d}$

$$\Rightarrow D(\mathfrak{I}) \subseteq \mathfrak{LM}_{a,b,c,d}$$

From the above relation ,we find a convergent sequence in $D(\mathfrak{I})$ implies the sequence also converges in $\mathfrak{LM}_{a,b,c,d}$. Consequently, the restriction of $f \in \mathfrak{LM}'_{a,b,c,d}$ to $D(\mathfrak{I})$ is in $D'(\mathfrak{I})$. However, $D(\mathfrak{I})$ is not dense in $\mathfrak{LM}_{a,b,c,d}$. Thus we cannot identify $\mathfrak{LM}'_{a,b,c,d}$ with a subspace of $D'(\mathfrak{I})$. Actually different members of $\mathfrak{LM}'_{a,b,c,d}$ can be found whose restriction to $D(\mathfrak{I})$ are identical.

LEMMA 2.4 : $\mathfrak{LM}_{a,b,c,d}$ IS A DENSE SUBSPACE OF E(3)

Let
$$\phi \in \mathfrak{LM}_{a,b,c,d} \Rightarrow \sup_{\substack{0 < l < \infty \\ 0 < m < \infty}} \left| m^{k+1} \mathfrak{D}_{l}^{j} \mathfrak{D}_{m}^{k} \phi(l,m) \right|$$
 is

bounded, where j, k = 0,1,2,...

$$\Rightarrow \sup_{l,m \in S} \left| \mathfrak{D}_l^j \mathfrak{D}_m^k \phi(l,m) \right| \text{ is bounded,}$$

where S is a compact set of $\mathfrak{I}=\left]0,\infty\right[$.

$$\Rightarrow \phi \in E(\mathfrak{J})$$

Therefore, we get $\mathfrak{LM}_{a,b,c,d} \subseteq E(\mathfrak{I})$.

We also get form the above lemma $D(\mathfrak{I}) \subseteq \mathfrak{L}\mathfrak{M}_{a,b,c,d} \subseteq E(\mathfrak{I})$. Also $D(\mathfrak{I})$ is a dense subspaces of $E(\mathfrak{I})$. It follows that $\mathfrak{L}\mathfrak{M}_{a,b,c,d}$ is a dense subspace of $E(\mathfrak{I})$. Hence we get the result.

3 EXTENSION OF $\mathfrak{L}\mathfrak{M}_{a,b,c,d}$ TRANSFORM TO A CLASS OF GENERALIZED FUNCTIONS

Let function f be a $\mathfrak{LM}_{a,b,c,d}$ -transformable generalized function if it satisfied following property:

- 1. f is a functional on some domain $\delta(f)$ of conventional functions.
- 2. f is additive in the sense that if ϕ , θ , $\phi + \theta$ are all members of $\check{\sigma}(f)$, then < f, $\phi + \theta > = < f$, $\phi > + < f$, $\theta >$ is in $\mathfrak{LM}_{a,b,c,d}$.
- 3. $\mathfrak{LM}_{a,b,c,d} \subset \check{\sigma}(f)$ the restriction of f to $\mathfrak{LM}_{a,b,c,d}$ is in $\mathfrak{LM}'_{a,b,c,d}$.

Since, $e^{-sl} m^{p-1} \in \mathfrak{LM}_{a,b,c,d}$ for $0 < l < \infty \& 0 < m < \infty$ and $0 < Res < \infty \& 0 < Rep < \infty$; We define the generalized $\mathfrak{LM}_{a,b,c,d}$ —transform of f by

$$F(s,p) = \langle f(l,m), e^{-sl} m^{p-1} \rangle$$

for
$$s, p \in \Omega f$$
 and $\Omega f = \{s, p: 0 < Res, Rep < \infty\}.$

 Ωf is called the region of definition for $\mathfrak{LM}_{a,b,c,d}$ -transform and $(0,\infty)$ are the abscissa of definition.

4 ANALYTICITY THEOREM OF \mathfrak{LM}_{a,b,c,d} TRANSFORM STATEMENT: $F(s,p) = \langle f(l,m), e^{-sl} m^{p-1} \rangle$ for $s,p \in \Omega f$ and $\Omega f = \{s,p: 0 < Res < \infty \& 0 < Rep < \infty\}$, then F(s,p) is analytic on Ωf and $\mathfrak{D}_s \mathfrak{D}_p F(s,p) = \langle f(l,m), \frac{\partial}{\partial s} \frac{\partial}{\partial n} e^{-sl} m^{p-1} \rangle$.

PROOF: Let s and p be two arbitrary member. Δs and Δp are respectively very small complex number respectively on s and p, such that $|\Delta s| \to 0$ and $|\Delta p| \to 0$.

$$F(s,p) = \langle f(l,m), e^{-sl} m^{p-1} \rangle$$

$$F(s + \Delta s, p + \Delta p) = \langle f(l,m), e^{-(s+\Delta s)l} m^{(p+\Delta p)-1} \rangle$$

Therefore we have

$$\frac{F(s+\Delta s,p+\Delta p)-F(s,p)}{\Delta s\,\Delta p}=\langle f(l,m),\frac{\partial}{\partial s}\;e^{-sl}\;\frac{\partial}{\partial p}\;m^{p-1}\rangle\\ =\langle f(l,m),\psi_{\Delta s\,\Delta p}\;\rangle$$

where,

$$\begin{split} \psi_{\Delta s \, \Delta p}(l,m) &= \frac{\partial}{\partial s} \, e^{-sl} \, \frac{\partial}{\partial p} \, m^{p-1} \\ &= \frac{1}{\Delta s} \Big\{ \left[e^{-(s+\Delta s)l} - e^{-sl} \right] - \frac{\partial}{\partial s} e^{-sl} \Big\} \, \frac{1}{\Delta p} \Big\{ \left[m^{(p+\Delta p)-1} - m^{p-1} \right] \\ &\quad - \frac{\partial}{\partial p} m^{p-1} \Big\} \end{split}$$

Now, we have to show that $\psi_{\Delta s \, \Delta p} \to 0$ in $\mathfrak{LM}_{a,b,c,d}$ as $|\Delta s| \to 0$ and $|\Delta p| \to 0$. Since $f(l,m) \in \mathfrak{LM}'_{a,b,c,d}$, so this will imply that $\langle f(l,m), \psi_{\Delta s \, \Delta p} \rangle \to 0$ as $|\Delta s| \to 0$ and $|\Delta p| \to 0$. For, let C_1 and C_2 denote the circle with center at s and p respectively with r_1 and r_2 , we get $(-\mathfrak{D}_l)^j(\mathfrak{D}_m)^k \, \psi_{\Delta s \, \Delta p}$

$$\begin{split} &= \frac{1}{\Delta s} \bigg\{ \mathfrak{D}_{l}^{j} \left[e^{-(s+\Delta s)l} - e^{-sl} \right] \\ &\quad - \frac{\partial \mathfrak{D}_{l}^{j}}{\partial s} e^{-sl} \bigg\} \frac{1}{\Delta p} \bigg\{ \mathfrak{D}_{m}^{k} \left[m^{(p+\Delta p)-1} - m^{p-1} \right] \\ &\quad - \frac{\partial \mathfrak{D}_{m}^{k}}{\partial p} m^{p-1} \bigg\} \end{split}$$

(Interchanging the differentiation on s and p with the differentiation on l and m)

$$\begin{split} \psi_{\Delta s \; \Delta p} &= \frac{1}{\Delta s} \Big\{ \big[U_j(s + \Delta s, l) - U_j(s, l) \big] - \frac{\partial}{\partial s} U_j(s, l) \Big\} \\ &\quad * \; \frac{1}{\Delta p} \Big\{ \big[V_k(p + \Delta p, m) - V_k(p, m) \big] \\ &\quad - \frac{\partial}{\partial p} V_k(p, m) \Big\} \end{split}$$

Where $U_j(s+\Delta s,l)$ and $U_j(s,l)$ are polynomials in l such that $U_j(s,l)\to U_j(s+\Delta s,l)$ as $s\to s+\Delta s$. Similarly $V_k(p+\Delta p,m)$ and $V_k(p,m)$ are polynomials in m such that $V_k(p,m)\to V_k(p+\Delta p,m)$ as $\to p+\Delta p$.

By Cauchy's integral formula, we get

$$\begin{split} \mathfrak{D}_{l}^{j} \, \mathfrak{D}_{m}^{k} \, \psi_{\Delta s \, \Delta p}(l,m) \\ &= \frac{1}{2\pi i \Delta s} \left\{ \int_{C_{1}} \left[\frac{1}{\varrho - s - \Delta s} - \frac{1}{\varrho - s} \right] U_{j}(\varrho, l) \, d\varrho \right. \\ &\left. - \int_{C_{1}} \left[\frac{1}{(\varrho - s)^{2}} \right] U_{j}(\varrho, l) \, d\varrho \right\} \\ &* \frac{1}{2\pi i \Delta p} \left\{ \int_{C_{2}} \left[\frac{1}{\sigma - p - \Delta p} - \frac{1}{\sigma - p} \right] V_{k}(\sigma, m) \, d\sigma \right. \\ &\left. - \int_{C_{2}} \left[\frac{1}{(\sigma - p)^{2}} \right] V_{k}(\sigma, m) \, d\sigma \right\} \end{split}$$

Where $\varrho \in C_1$ and $\sigma \in C_2$, the respectively circles with centers s & p and radius $r_1 \& r_2$. Therefore, we get

$$\begin{split} \mathfrak{D}_{l}^{j} \, \mathfrak{D}_{m}^{k} \, \, \psi_{\Delta s \, \Delta p} &= \frac{1}{2\pi i \Delta s} \left\{ \int_{C_{1}} \left[\frac{1}{\varrho - s - \Delta s} - \frac{1}{\varrho - s} \right. \right. \\ &\left. - \frac{\Delta s}{(\varrho - s)^{2}} \right] U_{j}(\varrho, l) \, d\varrho \right\} \\ & \quad * \frac{1}{2\pi i \Delta p} \left\{ \int_{C_{2}} \left[\frac{1}{\sigma - p - \Delta p} - \frac{1}{\sigma - p} \right. \right. \\ &\left. - \frac{\Delta p}{(\sigma - p)^{2}} \right] V_{k}(\sigma, m) \, d\sigma \right\} \end{split}$$

$$\begin{split} &= \frac{\Delta s \, \Delta p}{(2\pi i)^2} \left\{ \int_{C_1} \left[\frac{1}{(\varrho - s - \Delta s)(\varrho - s)^2} \right] U_j(\varrho, l) \, d\varrho \right\} \\ &* \left\{ \int_{C_2} \left[\frac{1}{(\sigma - p - \Delta p)(\sigma - p)^2} \right] V_k(\sigma, m) \, d\sigma \right\} \end{split}$$

Let $|\varrho - s| = R_1, |\varrho - s - \Delta s| = r_1, |\sigma - p - \Delta p| = R_2 \& |\sigma - p - \Delta p| = r_2 \ (r_1 < R_1 \ \text{and} \ r_2 < R_2).$ Since $s \in C_1 \& p \in C_2$ and $0 < l < \infty \& 0 < m < \infty$.

So,
$$\left|\mathcal{J}_{a,b}(l)\,\lambda_{c,d}(m)\,m^{k+1}\,U_j(\varrho,l)\,V_k(\sigma,m)\right|\leq M$$

Thus, we get

$$\begin{aligned} \left| \mathcal{J}_{a,b}(l) \, \lambda_{c,d}(m) \, m^{k+1} \, \mathfrak{D}_{l}^{j} \, \, \mathfrak{D}_{m}^{k} \, \psi_{\Delta s \, \Delta p}(l,m) \right| \\ & \leq \frac{K}{(2\pi)^{2}} |\Delta s| |\Delta p| \frac{1}{(R_{1} \, R_{2})^{2} r_{1} r_{2}} \int_{C_{1}} |d\varrho| \int_{C_{2}} |d\sigma| \end{aligned}$$

$$\begin{split} \leq & \frac{K}{(2\pi)^2} |\Delta s| |\Delta p| \frac{1}{(R_1 \, R_2)^2 r_1 r_2} \, 2\pi R_1 \, 2\pi R_2 \\ \leq & |\Delta s| |\Delta p| \frac{K}{R_1 \, R_2 r_1 r_2} \end{split}$$

From the above equation, it follows that $\psi_{\Delta s \, \Delta p} \to 0$ in $\mathfrak{LM}_{a,b,c,d}$ as $|\Delta s| \to 0$ and $|\Delta p| \to 0$. This completes the proof.

5 OPERATION - TRANSFORM FORMULA OF $\mathfrak{Lm}_{a,b,c,d}$ TRANSFORM 5.1 DIFFERENTIATION

If $\phi(l,m) \in \mathfrak{LM}_{a,b,c,d}$ where $\mathfrak{LM}_{a,b,c,d}$ is the space of all complex valued smooth functions (l,m). Such that for $\phi(l,m) \in \mathfrak{LM}_{a,b,c,d}$, we have

$$\gamma_{j,k} \phi(l,m) \triangleq \sup_{\substack{-\infty < l < \infty \\ -\infty < m < \infty}} \left| e^{-sl} m^{p-1} \mathfrak{D}_{l}^{j} \mathfrak{D}_{m}^{k} \phi(l,m) \right| < \infty$$

for each $j, k = 0, 1, 2, \dots$ is bounded.

We shall prove that

$$\gamma_{j,k} \left[-\mathfrak{D}_l \, \mathfrak{D}_m \, \phi(l,m) \right] = \gamma_{j+1,k+1} \left[\phi(l,m) \right]$$

PROOF:- It is easy to say that $\phi \to -\mathfrak{D}\phi$ is a continuous and linear mapping of $\mathfrak{L}\mathfrak{M}_{a,b,c,d}$ onto itself. Therefore the adjoint mapping $f \to \mathfrak{D}f$ is also a continuous and linear mapping of $\mathfrak{L}\mathfrak{M}'_{a,b,c,d}$ onto itself where $\mathfrak{L}\mathfrak{M}'_{a,b,c,d}$ is the dual of $\mathfrak{L}\mathfrak{M}_{a,b,c,d}$ (Zemanian [9]), we get

$$\begin{split} \langle \mathfrak{D}_{l} \, \mathfrak{D}_{m} f(l,m), \phi(l,m) \rangle &= \langle f(l,m), (-\mathfrak{D}_{l})(-\mathfrak{D}_{m}) \phi(l,m) \rangle \\ &= \langle f(l,m), s(p-1)e^{-sl} \, m^{p-2} \rangle \end{split}$$

Similarly, we also define a mapping $f \to \mathcal{D}_l^J \mathcal{D}_m^k f$ is also a continuous and linear mapping of $\mathfrak{LM}_{a,b,c,d}^J$.

$$\begin{split} \langle \, \mathfrak{D}_l^j \, \, \mathfrak{D}_m^k \, f(l,m), \phi(l,m) \rangle \\ &= \langle f(l,m), (-\mathfrak{D}_l)^j \, (-\mathfrak{D}_m)^k \, \phi(l,m) \rangle \\ &= \langle f(l,m), s^j \, (p-1)_k \, e^{-sl} \, m^{p-k-1} \rangle \end{split}$$

for each j, k = 0, 1, 2, ...

where
$$(a)_k =$$
 $a (a+1)(a+2) \dots \dots (a+k-1)$ $k=1,2,3,\dots \dots$ Therefore , we get

$$\begin{aligned} \gamma_{j,k} \left[\phi(l,m) \right] &= \mathfrak{L}\mathfrak{M} \, \mathfrak{D}_l^j \, \, \mathfrak{D}_m^k \, f \\ &= s^j \, (p-1)_k \, F(s,p-k) \qquad s,p-k \\ &\in \, \Omega f \end{aligned}$$

Again differentiating, we get

$$\Rightarrow \gamma_{j,k} [-\mathfrak{D}_{l} \mathfrak{D}_{m} \phi(l,m)] = s^{j+1} (p-1)_{k+1} F(s, p-1)_{k+1} F(s, p-1)_{k+1} [\phi(l,m)]$$

$$W(k+1) = \gamma_{j+1,k+1} [\phi(l,m)]$$

Hence we get the result.

5.2 MULTIPLICATION BY AN EXPONENTIAL AND POWER OF m

Let α, β be two complex number , we shall prove $\phi(l,m) \to e^{-sl} \ m^{p-1} \phi(l,m)$ is a continuous and linear mapping of $\mathfrak{QM}_{a,b,c,d}$ on to itself .

$$\langle f(l,m), e^{-\alpha l} m^{\beta} \phi(l,m) \rangle = F(s + \alpha, p + \beta)$$

PROOF :- Let $\phi(l, m) \in \mathfrak{LM}_{a,b,c,d}$, we have

$$\begin{split} & \mathfrak{D}_{l}^{j} \, \mathfrak{D}_{m}^{k} \big[e^{-\alpha l} \, m^{\beta} \, \phi(l.m) \big] \\ & = \sum_{r=0}^{j} \, \sum_{t=0}^{k} \, {}^{j} C_{r} \, {}^{k} C_{t} \, \, \mathfrak{D}_{l}^{j-r} e^{-\alpha l} \, \, \mathfrak{D}_{m}^{k-t} \, \, m^{\beta} \, \mathfrak{D}_{l}^{r} \, \, \mathfrak{D}_{m}^{t} \, \, \phi(l,m) \\ & = \sum_{r=0}^{j} \, \sum_{t=0}^{k} \, {}^{j} C_{r} \, {}^{k} C_{t} \, (-\alpha)^{j-r} \, e^{-\alpha l} \, \beta(\beta-1) \, ... \, ... \, ... \, (\beta-t) \\ & \qquad \qquad + 1) \, \, m^{\beta-t+1} \, \mathfrak{D}_{l}^{r} \, \, \mathfrak{D}_{m}^{t} \, \, \phi(l,m) \end{split}$$

Therefore, we get

$$\left| \int_{r}^{j} C_{r} C_{t} (-\alpha)^{j-r} e^{-\alpha l} \beta(\beta-1) \dots \dots (\beta-t+1) m^{\beta-t+1} \right| \le \mathfrak{C}$$

Thus, we get

$$\gamma_{j,k} \left[e^{-\alpha l} \ m^{\beta} \ \phi(l,m) \right] \le \mathfrak{C} \sum_{r=0}^{j} \sum_{t=0}^{k} \ \gamma_{r,t} \ \left[\phi(l,m) \right]$$

It follows that $\phi(l,m)$ is a continuous and linear mapping of $\mathfrak{LM}_{a,b,c,d}$ onto itself . Therefore, the adjoint mapping $f(l,m) \to e^{-\alpha l} \, m^\beta \, f(l,m)$ of $\phi(l,m) \to e^{-\alpha l} \, m^\beta \, \phi(l,m)$, is also continuous and linear mapping of $\mathfrak{LM}_{a,b,c,d}$ onto itself due to theorem of Zemanian , where $\mathfrak{LM}_{a,b,c,d}$ is the dual of $\mathfrak{LM}_{a,b,c,d}$, we get

$$\langle e^{-\alpha l} m^{\beta} f(l,m), \phi(l,m) \rangle = \langle f(l,m), e^{-\alpha l} m^{\beta} \phi(l,m) \rangle$$

$$= \langle f(l,m), e^{-(s+\alpha)l} m^{p+\beta-1} \rangle$$

From definition of generalized function

$$\mathfrak{LM}\left[e^{-\alpha l} \, m^{\beta} \, f(l,m)\right] = F(s+\alpha,p+\beta) \qquad s+\alpha,p+\beta$$

$$\in \Omega f$$

Hence we get the result.

5.3 MULTIPLICATION BY AN POWER OF l AND $\log m$

Let α and β be two real numbers , such that $\alpha, \beta \geq 0$. We shall prove $\phi(l,m) \to l^{\alpha} (\log m)^{\beta} \phi(l,m)$ is a continuous and linear mapping of $\mathfrak{LM}_{a,b,c,d}$ onto itself .

PROOF:- Let
$$\phi(l,m) \in \mathfrak{L}\mathfrak{M}_{a,b,c,d}$$
, we have
$$\mathfrak{D}_l^j \, \mathfrak{D}_m^k \big[l^\alpha \, (\log m)^\beta \, \phi(l,m) \big] = \sum_{r=0}^j \sum_{t=0}^k \, ^j C_r \, ^k C_t \, \mathfrak{D}_l^{j-r} \, l^\alpha \, \mathfrak{D}_m^{k-t} \, (\log m)^\beta \, \mathfrak{D}_l^r \, \mathfrak{D}_m^t \, \phi(l,m)$$

Therefore, we get

$$\begin{split} \big| \, \mathfrak{D}_{l}^{j} \, \, \mathfrak{D}_{m}^{k} \big[l^{\alpha} \, (\log m)^{\beta} \, \, \phi(l,m) \big] \big| &\leq \mathcal{K} \, \sum_{r=0}^{j} \, \sum_{\substack{l=0 \\ j}}^{k} \, \, \big| \, \mathfrak{D}_{l}^{j} \, \mathfrak{D}_{m}^{k} \, \, \phi(l,m) \big| \\ \gamma_{j,k} \, \big[l^{\alpha} \, (\log m)^{\beta} \, \, \phi(l,m) \big] &\leq \mathcal{K} \, \sum_{r=0}^{j} \, \sum_{\substack{l=0 \\ j=0}}^{k} \, \, \gamma_{r,t} \, \, \left[\phi(l,m) \right] \end{split}$$

It follows that $\phi(l,m) \to l^{\alpha} (\log m)^{\beta} \phi(l,m)$ is a continuous and linear mapping of $\mathfrak{LM}_{a,b,c,d}$ onto itself. Therefore, from the theorem of Zemanian we define a adjoint mapping $f(l,m) \to l^{\alpha} (\log m)^{\beta} f(l,m)$ of is also

continuous and linear mapping of $\mathfrak{LM}'_{a,b,c,d}$ onto itself, where $\mathfrak{LM}'_{a,b,c,d}$ is the dual of $\mathfrak{LM}_{a,b,c,d}$, we get

$$\langle l (\log m) f(l,m), \phi(l,m) \rangle = \langle f(l,m), l (\log m) \phi(l,m) \rangle$$

$$= \langle f(l,m), l (\log m) e^{-sl} m^{p-1} \rangle$$

$$= (-\mathcal{D}_s)(\mathcal{D}_p) \langle f(l,m), e^{-sl} m^{p-1} \rangle$$

If f be a generalized function of $\mathfrak{LM}_{a,b,c,d}$, then we get $\langle l^{\alpha} (\log m)^{\beta} f(l,m), \phi(l,m) \rangle$

$$= \langle f(l,m), l^{\alpha} (\log m)^{\beta} \phi(l,m) \rangle$$

$$= \langle l^{\alpha-1} (\log m)^{\beta-1} f(l,m), l e^{-sl} (\log m) m^{p-1} \rangle$$

$$= (-\mathfrak{D}_s) (\mathfrak{D}_p) \langle l^{\alpha-1} (\log m)^{\beta-1} f(l,m), e^{-sl} m^{p-1} \rangle$$

$$= (-\mathfrak{D}_s) (\mathfrak{D}_p) \langle l^{\alpha-2} (\log m)^{\beta-2} f(l,m), l e^{-sl} (\log m) m^{p-1} \rangle$$

$$= (-\mathfrak{D}_s)^2 (\mathfrak{D}_p)^2 \langle l^{\alpha-2} (\log m)^{\beta-2} f(l,m), e^{-sl} m^{p-1} \rangle$$

$$= \cdots = (-\mathfrak{D}_s)^{\alpha} (\mathfrak{D}_n)^{\beta} \langle f(l,m), e^{-sl} m^{p-1} \rangle$$

From definition of generalized function

 $\mathfrak{LM}\left[l^{\alpha}(\log m)^{\beta} f(l,m)\right] = (-\mathfrak{D}_{s})^{\alpha} (\mathfrak{D}_{p})^{\beta} F(s,p) \ s,p \in \Omega f$ Hence we get the result.

REFERENCES

- Ahmed I. Zayed "Handbook of Function and Generalized Function Transformations", CRC Press 1996.
- 2. Benedetto J. "The Laplace Transform of Generalized functions", 1964.
- 3. Fox C., "Applications of Mellin's Transformation to the integral equations", 1933.
- 4. Khairnar S.M., Pise R.M., Salunke J.N. "Applications of the Laplace-Mellin integral Transform to Differential Equations" Int. Journal of Scientific and Research Publications, Vol.2, Issue 5, 2012.
- 5. Naylor Derek , "On a Mellin Type Integral Transforms" , Journal of Mathematics and Mechanic, Vol. 12, Issue 2, 1963.
- 6. Reed I. S. ,"The Mellin Type Double Integral" , Cambridge, London.
- 7. Sharma V.D, Thakare M.M "Generalized Laplace-Fractional Mellin Transform and operators", Int. J. Pure Appl. Sci. Technol.16(1), 2013 (pp.20-25).
- 8. Sharma V.D., Thakare M.M. "Generalized Laplace-Finite Mellin Transform", Int. Journal of Engineering Research and Applications, Vol.3, Issue 5,2013 (pp.1468-1470).
- 9. Zemanian A. H "Generalized Integral transformation", Inter science publisher, New York 1968.
- 10. Zemanian A.H "The Distributional Laplace and Mellin transformations", J. SIAM, U.S.A, Vol. 14, Issue 1, 1908.