
International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 1
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

An Adaptive and Efficient XML Parser Tool for
Domain Specific Languages

W. Jai Singh, S. Nithya Bala

Abstract— XML (eXtensible Markup Language) is a standard and universal language for representing information. XML has become integral to
many critical enterprise technologies with its ability to enable data interoperability between applications on different platforms. Every application that
processes information from XML documents needs an XML Parser which reads an XML document and provides interface for user to access its con-
tent and structure. However the processing of xml documents has a reputation of poor performance and a number of optimizations have been de-
veloped to address this performance problem from different perspectives, none of which have been entirely satisfactory. Hence, in this paper we
developed a Fast Parser tool for domain specific languages. In this we can execute Parser user friendly without having any constraints.

Index Terms—XML, Parser Tool, Document Object Model, SAX, XML Document, Document Validation.

—————————— ——————————

1 INTRODUCTION

he XML (eXtensible Markup Language) is now widely
adopted within (networked) applications. Due to its flex-
ibility and efficiency in transmission of data, XML has be-

come the emerging standard of data transfer and data ex-
change across the application and Internet [1]. XML has poten-
tial as a back end solution as well as a marvelous standard for
re-designing databases and other content. XML has become
integral to many critical enterprise technologies with its ability
to enable data interoperability between on different platforms.
With various conversion tools now emerging in the market-
place, XML can be used to bridge between different applica-
tions. It’s standard-based, set forth a design for structuring fu-
ture content [1], [2].

XML delivers key advantages in interoperability due to its
flexibility, expressiveness and platform-neutrality. As XML has
become a performance-critical aspect of the next generation of
business computing infrastructure. Tomorrow’s computers will
have more cores rather than exponentially faster clock speeds,
and software will increasingly have to rely on parallelism to
take advantage of this trend.

Every application that processes information from XML
documents needs an XML Parser which reads an XML docu-
ment and provides interface for user to access its content and
structure. An XML parser facilitates in simplifying the process
of manipulating XML documents. There are mainly two chal-
lenges for generic XML parsers. One is that the code size of the
XML Parsers is restricted because of the limitation of memory.
The other is the run time adaptability of XML Parsers is re-
quired due to the diversity of applications in terms of their de-
pendency on XML syntax set.

Several efforts have been made to address the parsing
and validation performance through the use of grammar based
parser generation by leveraging XML schema language such as
DTD (Document Type Definition), XML schema at compile
time. DOM (Document Object Model) and SAX (Simple API for
XML) are the two most widely used XML parsing models, none
of which has been entirely satisfactory [2], [5].

A parser can read the XML document components via
Application Programming Interfaces (APIs) in two approaches.
For stream-based approach such as SAX (also known as event-
based parser) and tree-based approach such as DOM. DOM
(Document Object Model) and SAX (Simple API for XML) are
the two most widely used XML parsing models, none of which
has been entirely satisfactory [2], [3], [5], [7]. A brief description
of them is given as follows.

DOM is a tree-based interface that models an XML
document as a tree of various nodes. The main advantage of
this parse method is that it supports random access to the doc-
ument. DOM parsers create a node object for each node that
precisely models all the structure and content information [2],
[3], [5]. DOM is an easy way to work with XML. However,
DOM parsers take too much time and memory, making them
unavailable for large XML documents. Moreover, no actual
work can be done before completely parsing XML, which in-
troduces significant delay and is unacceptable in enterprise
applications.

SAX is an event-based parsing model that reads an
XML document from beginning to end. Each time it encounters
a syntax construction; it generates an event and notifies the
application [2], [5], [7]. It does not preserve the structure and
content information in memory, thus saving a large amount of
memory space. Unfortunately, they lack the ability of random
access and are forward only, which limits their use to a very
small scope. SAX is memory efficient but writing a SAX parser
is complex.

Several methods were presented to improve XML
parsing from different viewpoints. There are a number of ap-
proaches trying to address the performance bottleneck of XML
parsing. The typical software solutions include the pull-based

T

————————————————

W. Jai Singh, Assistant Professor, Department of MCA,
Park College of Engineering and Technology, Coimbatore,
Tamil Nadu, India – 641 659.
S. Nithya Bala, PG Scholar, Department of MCA, Park
College of Engineering and Technology, Coimbatore, Ta-
mil Nadu, India – 641 659

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 2
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

parsing [9], lazy parsing [10] and schema-specific parsing [4].
Su Cheng Haw and G. S. V. Radha Krishna Rao have

presented a model called “Comparative Study and Benchmark-
ing on XML Parser”. In that, they compare the xerces and .NET
parsers based on the performance, memory, usage and so on
[2]. Giuseppe Psaila have been developed a system called
“Loosely coupling Java algorithms and XML Parsers”. In that,
he conducted a study about the problem of coupling java algo-
rithms with XML parsers. Su-cheng Haw and Chien-Sing Lee
have been presented a model called “Fast Native XML Storage
and Qurey Retrieval”. In that, they proposed the INLAB2 ar-
chitecture comprises of five main components namely XML
parser, XML encoder, XML indexer, Data manager and Query
processor [10]. Fadi El-Hassan and Dan Ionescu presented “An
efficient Hardware based XML parsing techniques”. In that,
they proposed hardware based solutions can be an obvious
choice to parse XML in a very efficient manner.

The existing XML Parsers spend a large amount of
time in tokenizing the input. To overcome all the drawbacks,
here we have developed a new Fast Parser tool for domain spe-
cific languages. Though careful analysis of the operations re-
quired for parsing and validation, we are using hash table to
store element information, this will enhance the speed of acces-
sibility while searching for an element. More over we are using
regular expressions to search for the tags and attributes, this
will enhance the speed while reading XML contents.

2 Fast XML Parser
To parse an XML document in software, the processing

sequence starts by loading the XML document, then reading its
characters in sequence, extracting elements and attributes and
then validating the XML document, writing parsed information
and finally reading the resulting parsed data. Our initial ap-
proach separates the process of reading the XML document
and stores the contents in to the hash table using regular ex-
pressions. Fig.1 shows the architecture of the fast XML parser
tool.

Fig.1: XML Parser Architecture

The Fast XML Parser Tool contains four modules. First,
load an XML document in an application. Second, reading an
XML document. Third, Writing an XML document into the ap-
plication. Finally, knowledge based search of an XML docu-

ment. The Fast XML Parser Tool is as follows:

Load an XML document: Before an XML document can be ac-
cessed and manipulated, it must be loaded into an XML Parser.
The XML Parser reads XML document and converts it into a
meaningful format. The job of the XML Parser is to make sure
that the document meets the defined structure and constraints.
The validation rule for any particular sequence of character
data is determined by the type of definition for its enclosing
element. Fig.2 shows the sample XML document.

Algorithm
Step 1: Read XML File
Step 2: Search for start tag using regular expression ‘<…>
Step 3: If a start tag found then
Step 4: Add attributes to hash table
Step 5: Search or end tag using regular expression ‘</…>
Step 6: Add element to hash table
Step 7: End if
Step 8: Repeat step 3 to 7 until End Of File
Step 9: Verify and validate each element in hash table
Step 10: End XML Parser

Reading an XML document: Reading an existing load XML
file. It provides the createXMLReader function that returns an
implementation of the XMLReader interface. It reads the root
element first and reads the sub element and corresponding
data. Finally creates the XML document and sends it to the user
application as a XML document.

Writing an XML document: Read the XML document and se-
parates the content and writes it to the corresponding hash
table such as root element, sub element, attributes and data. It
provides the CreateXMLWriter function to return an imple-
mentation of the XMLWriter function.

Knowledge based search: Search a particular element or con-
tent from an XML document by our fast XML Parser tool. In-
itially it checks the content in storage unit using hash key that
is root element. If it is available then it goes to the sub element
and corresponding data and displays it as output. If it is not
available means it terminates the search.

Fig.2: Sample XML Document

Application XML
Parser

Storage Unit

XML
document

Parsed
Data

<?xml version="1.0" encoding="UTF-8"?>
<!-- Product data is the root element-->
<PRODUCTDATA>
<PRODUCT PROID="P001">
<PRODUCTNAME>Barbie
Doll</PRODUCTNAME>
<DESCRIPTION>This is a toy for children in
the age group of 5-10 years</DESCRIPTION>
<PRICE>$120</PRICE>
<QUANTITY>12</QUANTITY>
</PRODUCT>
</PRODUCTDATA>

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 3
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

3 EXPERIMENTAL RESULTS AND DISCUSSION

According to the experiment and considering the bal-
ance between memory and computing consumption, our pars-
er tool is appropriate for parsing XML document with less
memory. When XML documents size increases and gets larger,
the time difference will increase accordingly.

We made some assumptions to facilitate our estima-
tion. One of the most noticeable assumptions is that we simply
ignore the intensive garbage collection operations in DOM.
Garbage collection is actually very time-consuming, our parser
tool can avoid it, because we does not recycle the unused
memory space when parsing finishes. If we take this into ac-
count, the time difference would be even larger. So, we can
draw the conclusion that our parser gains great advantage over
DOM especially for large and complicated XML documents.

3.1. Testing Results

The testing result shows that great improvement has
been achieved over present XML parsers, both in terms of
memory computation and parsing performance. The tests are
performed on our XML parser tool and MSXML. MSXML is a
typical DOM parser which is widely used in enterprise applica-
tions. Similar tests are performed on other open-source XML
parsers too, like Xerces-C++, Jaxen and Xalan. For clarity, we
only present the testing results between our XML parser tool
and MSXML. The testing codes are run in a HP G61 with
2.80GHz Intel(R) Core2 Due CPU and 4GB of RAM.

3.2. Memory Consumption

In this part, we test the ratio of memory space needed
to parse an XML document to the original XML document size.
The memory usage when many 1KB and 5KB XML documents
are stored and accessed. The result shows in fig.3 that the
memory consumption is acceptable in such an environment.

Fig.3: Memory Consumption Results

3.3 Parsing Performance

The results of parsing throughput per second are
shown in figure. Note that our XML parser tool gets the lowest
throughput, thus leading to low parsing performance. Figure 4
shows the cumulative parsing times for a group of similar XML
documents. The X-axis is the file size of the XML documents
that were parsed.

Fig.4: Parsing Throughput Results

3.4 Results Analysis

From above testing results we can see that our XML parser tool
consistently outperforms MSXML in both memory consump-
tion and parsing performance. Our XML parser tool consumes
memory about approximately the same size of original XML
document, while MSXML takes 3~4 times. Our XML parser tool
deliveries up to 20~35MB/sec sustained throughput, while the
average parsing throughput of MSXML is only 12MB/sec. Note
that for MSXML, parsing throughput declines sharply when
XML documents become large, which verifies the conclusion
that too much creation and destroy of node objects in DOM can
slow down parsing performance considerably.

4 CONCLUSION

From a proper analysis of positive points and con-
straints on the XML Parser tool, it can be safely concluded that
the product is a highly efficient. This XML Parser tool is work-
ing properly and meeting to all user requirements. This tool
can be easily plugged in domain specific languages. Our Parser
tool can improved the XML parsing performance significantly
and scales well. The computing efficiency will be improved in
the future work.

5 REFERENCE

[1] “eXtensible Markup Language”, http:/www.w3.org/xml.
10th Feb 2011.

[2] Su Cheng Haw and G. S. V. Radha Krishna Rao, “A Comparative
Study and Benchmarking on XML Parsers”, International Confe-
rence on Computer science and Technology, IEEE Computer Society,

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 4
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

pp.321-325, Feb-2007.
[3] Shiren Ye and Tat-Seng Chua, “Learning Object Models from Se-

mistructured Web Documents”, IEEE Transactions on Knowledge
and Data Engineering, pp. 334-339, 2006.

[4] Zhenghong Gao, Yinfei Pan, Ying Zhang and Kenneth Chiu, ”A
High Performance Schema-Specific XML Parser”, Third IEEE In-
ternational Conference on e-Science and Grid Computing, IEEE Com-
puter Society, pp.245-252, 2007.

[5] A. Waheed, J. Ding, “Benchmarking XML Based Application
Oriented Network infrastructure and Services”, International
Symposium on Applications and the Internet, IEEE Computer Socie-
ty, 2007.

[6] Wei Zhang and Robert A. van Engelen, “An Adaptive XML
Parser for Developing High-Performance Web Services”, Fourth
IEEE International Conference on eScience, IEEE Computer Socie-
ty, 2008.

[7] Yunsong Zhang Lei Zhao* Jiwen Yang Liying Yu, “NEM-XML:
A Fast Non-extractive XML Parsing Algorithm”, Third Interna-
tional Conference on Multimedia and Ubiquitous Engineering, IEEE
Computer Society, 2009.

[8] Zhou Yanming and Qu Mingbin, “A Run-time Adaptive and
Code-size Efficient XML Parser”, 30th Annual International
Computer Software and Applications Conference, IEEE Com-
puter Society, 2006.

[9] Giuseppe Psaila, “Loosely Coupling Java Algorithms and XML
Parsers: a Performance-Oriented Study”, 22nd International Con-
ference on Data Engineering Workshops, IEEE Computer Society,
2006.

[10] Su-Cheng Haw and Chien-Sing Lee, “INLAB2: Fast Native XML
Storage and Query Retrieval”, 3rd International Conference on In-
telligent System and Knowledge Engineering, IEEE Computer So-
ciety, pp.44-49, 2008.

[11] Fadi El-Hassan and Dan Ionescu, “SCBXP: An efficient hard-
ware-based XML parsing technique”, IEEE Computer Society,
pp.45-50, 2009.

[12] Wei Lu , Kenneth Chiu and Yinfei Pan, “A Parallel Approach to
XML Parsing”, Grid Computing Conference , pp.223-230, 2006.

[13] Gang WANG, Cheng XU, Ying LI, Ying CHEN, “Analyzing XML
Parser Memory Characteristics: Experiments towards Improv-
ing Web Services Performance”, IEEE International Conference on
Web Services, IEEE Computer Society, 2006.

http://www.ijser.org/

